Analisis Perbandingan Kompresi Citra Menggunakan Algoritma Run Length Encoding dan Algoritma Fixed Length Binary Encoding
Abstract
Technology is developing very quickly and will continue to increase, so it plays an important role in the process of sending information or data from one device to another. The speed of transmission depends on the size of the data to be sent. Data with a larger size requires a longer delivery time. The amount of storage space required increases as more files are stored. This has led to the development of file shrinking techniques, also known as data compression techniques, with the aim of minimizing the loss of data quality after transmission and reducing the amount of storage space required. Compression techniques have several algorithms that can be used to reduce file size. As in this research, the compression process is done with the run length encoding algorithm and the fixed length binary encoding algorithm. Both algorithms have different compression results, so it is necessary to make a comparison. To make the comparison, 6 grayscale image files with *.jpg extension are used with different resolutions and compare their performance according to predetermined parameters. The compression comparison results of one image data resolution of 300 x 300 in the Run Length Encoding algorithm has a Ratio of Compression (RC) 1.038792, Compression Ratio (CR) 96.266%, Redundancy (Rd) 3.734%, Compression time 399ms, and Decompression time 297ms. While the Fixed Length Binary Encoding algorithm has a Ratio of Compression (RC) of 1.37, Compression Ratio (CR) of 73.248%, Redundancy (Rd) of 26.752%, Compression time of 3258ms, and Decompression time of 1047ms. So from these results it can be said that the better performance in compressing images is the Fixed Length Binary Encoding algorithm compared to Run Length Encoding.
Downloads
References
Fitriya, L. A., Purboyo, T. W., & Prasasti, A. L. (2017). A Review of Data Compression Techniques. 12(19), 8956–8963.
Ginting, Z. A. (2017). Implementasi Algoritma Rabin Dan Fixed Length Binary Encoding Dalam Pengamanan Dan Kompresi File Rtf. Universitas Sumatera Utara.
Hasan, I., Tommy, & Syahputri, N. I. (2021). Analisis Parameter Kompresi Algoritma Elias Omega Code dan Fibonacci Code Pada File Digital. 6341(April), 8–22.
Mansyuri, U. (2021). KOMPRESI DATA TEKS DENGAN METODE RUN LENGTH mengurangi jumlah data dalam teks . Contoh kompresi sederhana misalnya kata. 1(2), 102–109.
Nas, C., Ilham, W., & Syafrinal, I. (2019). Analisis Algoritma Shannon-Fano Dalam Kompresi Data Pengajuan Proposal Skripsi Mahasiswa STMIK CIC Cirebon. 8(2), 91–100.
Pangesti, W. E., Widagdo, G., Riana, D., & Hadianti, S. (2020). Implementasi Kompresi Citra Digital Dengan Membandingkan Metode Lossy Dan Lossless Compression Menggunakan Matlab. Jurnal Khatulistiwa Informatika, 8(1), 53–58. https://doi.org/10.31294/jki.v8i1.7759
Prabiantissa, C. N., Sulaksono, D. H., Yuliastuti, G. E., & Nugroho, A. P. (2023). Implementasi Algoritma Kompresi Lempel-Ziv-Welch pada Data Citra. 321–325.
Pratiwi, D., & Zebua, T. (2019). ANALISIS PERBANDINGAN KINERJA ALGORITMA FIXED LENGTH BINARY ENCODING DAN ALGORITMA ELIAS GAMMA CODE DALAM. 3, 424–430. https://doi.org/10.30865/komik.v3i1.1623
Prayoga, E., & Suryaningrum, K. M. (2018). IMPLEMENTASI ALGORITMA HUFFMAN DAN RUN LENGTH ENCODING PADA APLIKASI KOMPRESI BERBASIS WEB. IV(2), 92–101.
Pujianto, Mujito, Prasetyo, B. H., & Prabowo, D. (2020). Perbandingan Metode Huffman dan Run Length Encoding Pada Kompresi Document. InfoTekJar: Jurnal Nasional Informatika Dan Teknologi Jaringan, 5(1), 216–223.
Putra, A. B. W., & Muhammad Trisna Aryun. (2021). Kompresi Citra Digital Dengan Basis Komponen Warna RGB Menggunakan Metode K-Means Clustering. Jurnal Komputer Terapan, 7(1), 14–23.
Rumetna, M. S., Lina, T. N., & Santoso, A. B. (2020). Rancang Bangun Aplikasi Koperasi Simpan Pinjam Menggunakan Metode Research and Development. Simetris: Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 11(1), 119–128. https://doi.org/10.24176/simet.v11i1.3731
Sandra, R. A. (2023). Implementasi Kombinasi Algoritma Tunstall Code Dan Boldi-Vigna Untuk Kompresi File Pdf. Jurnal Ilmu Komputer, Teknologi Dan Informasi, 1(2), 34–42.
Sanjaya, A., & Aria, M. (2018). Teknik Kompresi pada Transmisi Data Citra Payload KOMURINDO. 7(2), 103–111. https://doi.org/10.34010/komputika.v7i2.1512
Saragih, S. R., & Utomo, D. P. (2020). Penarapan Algoritma Prefix Code Dalam Kompresi Data Teks. KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 4(1), 249–252. https://doi.org/10.30865/komik.v4i1.2691
Siahaan, S. (2024). Perbandingan Kompresi File Audio Menggunakan Algoritma Fibonacci Dan Algoritma Invert Elias Delta. Jurnal Sistem Informasi, Teknik Informatika Dan Teknologi Pendidikan, 3(2), 82–95. https://doi.org/10.55338/justikpen.v3i2.89
Simanjuntak, L. V. (2020). Perbandingan Algoritma Elias Delta Code dengan Levenstein Untuk Kompresi File Teks. Journal of Computer System and …, 1(3), 184–190.
Simanjuntak, S. M. (2023). Analisis Perbandingan Kompresi File Audio Menggunakan Algoritma Shannon Fano Dengan Algoritma Fibonacci Code. Jurnal Kajian Ilmiah Teknologi Informasi Dan Komputer, 2(1), 1–10. https://doi.org/10.62866/jutik.v2i1.110
Sunardi, H., Zulkifli, & Antony, F. (2021). Transformasi Geometri Rotasi Citra Digital Untuk Mendapatkan Kompresi Optimal Menggunakan Metode Lossless Dan Lossy. Jurnal Ilmiah Informatika Global, 12(1), 15–22. https://doi.org/10.36982/jiig.v12i1.1540
Utomo, D. A., Kenedi, I., & Jumadi, J. (2021). Perancangan Aplikasi Kompresi Menggunakan Metode Deflate. 1(1), 212–219.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Perbandingan Kompresi Citra Menggunakan Algoritma Run Length Encoding dan Algoritma Fixed Length Binary Encoding
Pages: 182-195
Copyright (c) 2024 Umi Hani Lestari, Yusuf Ramadhan Nasution, Ibnu Rusydi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).