Algoritma Backpropagation dalam Memprediksi Jumlah Angka Kemiskinan di Provinsi Sumatera Utara
Abstract
Poverty is one of the phenomenal problems that Indonesia faces every year. Therefore, this study was conducted with the aim to predict the number of poverty figures by district/city in the province of North Sumatra. The algorithm used to conduct this research is the backpropagation algorithm. This algorithm is one algorithm that is often used to make data predictions. The data used is the data of the poor population in North Sumatra in 2013-2017, which was sourced from the Central Statistics Agency of North Sumatra. Based on this data will be formed and determined the network architecture model used with the Backpropagation algorithm, including 3-9-1, 3-16-1, 3-18-1, 3-23-1, and 3-40-1. From these 5 models after training and testing, it was found that the best architectural model was 3-23-1. The accuracy rate of this architectural model is 97% with an MSE test value of 0.00359. The results of this study are in the form of predictions of the number of poverty in North Sumatra for the next 5 years. The results of this study are expected to be a reference for the regional government of North Sumatra to see the level of development of poverty in North Sumatra for the coming year.
Downloads
References
Afriliansyah, T., Parulian, P., Ulva, A. F., Simanjuntak, M. Y., Wanto, A., Sihombing, D., … Ginantra, N. (2019). Implementation of Bayesian Regulation Algorithm for Estimation of Production Index Level Micro and Small Industry. Journal of Physics: Conference Series, 1255(1), 1–6.
Atalay, R. (2015). The Education and the Human Capital to Get Rid of the Middle-income Trap and to Provide the Economic Development. Procedia - Social and Behavioral Sciences, 174, 969–976. https://doi.org/10.1016/j.sbspro.2015.01.720
Atika, D. (2018). Implementasi Algoritma Spritz dan Algoritma RC4A Dalam Skema Three-Pass Protocol Untuk Pengamanan Data.
Bhawika, G. W., Purwantoro, P., GS, A. D., Sudrajat, D., Rahman, A., Makmur, M., … Wanto, A. (2019). Implementation of ANN for Predicting the Percentage of Illiteracy in Indonesia by Age Group. Journal of Physics: Conference Series, 1255(1), 1–6.
Binti, M. T. (2016). Analisa Pengaruh Pertumbuhan Ekonomi Terhadap Penurunan Tingkat Kemiskinan di Kalimantan Tengah. Jurnal Komunikasi Bisnis Dan Manajemen, 3(6), 69–78.
Lubis, M. R., Saputra, W., Wanto, A., Andani, S. R., & Poningsih, P. (2019). Analysis of Artificial Neural Networks Method Backpropagation to Improve the Understanding Student in Algorithm and Programming. Journal of Physics: Conference Series, 1255(1), 1–6. https://doi.org/10.1088/1742-6596/1255/1/012032
Parlina, I., Wanto, A., & Windarto, A. P. (2019). Artificial Neural Network Pada Industri Non Migas Sebagai Langkah Menuju Revolusi Industri 4.0. InfoTekJar : Jurnal Nasional Informatika Dan Teknologi Jaringan, 4(1), 155–160.
Parulian, P., Tinambunan, M. H., Ginting, S., Gibran, M. K., Wanto, A., Muharram, L. O., … Bhawika, G. W. (2019). Analysis of Sequential Order Incremental Methods in Predicting the Number of Victims Affected by Disasters. Journal of Physics: Conference Series, 1255(1), 1–6.
Purba, I. S., Wanto, A., Riansah, R. M., Ahmad, Y., Siregar, S. P., Winanjaya, R., … Silitonga, H. (2019). Accuracy Level of Backpropagation Algorithm to Predict Livestock Population of Simalungun Regency in Indonesia Accuracy Level of Backpropagation Algorithm to Predict Livestock Population of Simalungun Regency in Indonesia. Journal of Physics: Conference Series, 1255(1), 1–6.
Purba, N. Z., Wanto, A., & Kirana, I. O. (2019). Implementation of ANN for Prediction of Unemployment Rate Based on Urban Village in 3 Sub-Districts of Pematangsiantar. International Journal of Information System & Technology, 3(1), 107–116.
Rubiyanah, Maria Magdalena Minarsih, L. B. H. (2016). Implementasi Program Nasional Pemberdayaan Masyarakat Mandiri Perkotaan Dalam Penanggulangan Kemiskinan. Journal Of Management, 2(2), 1–18.
Saputra, W., Hardinata, J. T., & Wanto, A. (2020). Resilient method in determining the best architectural model for predicting open unemployment in Indonesia. IOP Conference Series: Materials Science and Engineering, 725(1), 1–7. https://doi.org/10.1088/1757-899X/725/1/012115
Saputra, W., Poningsih, P., Lubis, M. R., Andani, S. R., Damanik, I. S., & Wanto, A. (2019). Analysis of Artificial Neural Network in Predicting the Fuel Consumption by Type of Power Plant. Journal of Physics: Conference Series, 1255(1), 1–5. https://doi.org/10.1088/1742-6596/1255/1/012069
Saragih, J. R., Hartama, D., & Wanto, A. (2020). Prediksi Produksi Susu Segar Di Indonesia Menggunakan Algoritma Backpropagation. Jurnal Ilmiah Informatika, 08(01), 58–65.
Setti, S., Wanto, A., Syafiq, M., Andriano, A., & Sihotang, B. K. (2019). Analysis of Backpropagation Algorithms in Predicting World Internet Users. Journal of Physics: Conference Series, 1255(1), 1–6. https://doi.org/10.1088/1742-6596/1255/1/012018
Sinaga, S. P., Wanto, A., & Solikhun, S. (2019). Implementasi Jaringan Syaraf Tiruan Resilient Backpropagation dalam Memprediksi Angka Harapan Hidup Masyarakat Sumatera Utara. Infomedia, 4(2), 81–88.
Siregar, E., Mawengkang, H., Nababan, E. B., & Wanto, A. (2019). Analysis of Backpropagation Method with Sigmoid Bipolar and Linear Function in Prediction of Population Growth. Journal of Physics: Conference Series, 1255(1), 1–6.
Siregar, S. P., Wanto, A., & Nasution, Z. M. (2018). Analisis Akurasi Arsitektur JST Berdasarkan Jumlah Penduduk Pada Kabupaten / Kota di Sumatera Utara. Seminar Nasional Sains & Teknologi Informasi (SENSASI), 526–536.
Situmorang, M., Wanto, A., & Nasution, Z. M. (2019). Architectural Model of Backpropagation ANN for Prediction of Population-Based on Sub-Districts in Pematangsiantar City. International Journal of Information System & Technology, 3(1), 98–106.
Sormin, M. K. Z., Sihombing, P., Amalia, A., Wanto, A., Hartama, D., & Chan, D. M. (2019). Predictions of World Population Life Expectancy Using Cyclical Order Weight / Bias. Journal of Physics: Conference Series, 1255(1), 1–6.
Sudiar, S. (2015). Konsolidasi Potensi Pembangunan: Studi Tentang Penanganan Kemiskinan di Kecamatan Muara Muntai-Kutai Kartanegara. Jurnal Paradigma, 4(2), 69–79.
Syahza, A. (2014). Model Pengembangan Daerah Tertinggal Dalam Upaya Percepatan Pembangunan Ekonomi Pedesaan. Ekuitas : Jurnal Ekonomi Dan Keuangan, 18(3), 365–386.
Wanto, A. (2018). Penerapan Jaringan Saraf Tiruan Dalam Memprediksi Jumlah Kemiskinan Pada Kabupaten/Kota Di Provinsi Riau. Kumpulan JurnaL Ilmu Komputer (KLIK), 05(01), 61–74.
Wanto, A., Ginantra, N., Nurmawati, N., Bhawika, G. W., GS, A. D., Purwantoro, P., … Taufiqurrahman, T. (2019). Analysis of the Backpropagation Algorithm in Viewing Import Value Development Levels Based on Main Country of Origin. Journal of Physics: Conference Series, 1255(1), 1–6.
Wanto, A., & Hardinata, J. T. (2019). Estimasi Penduduk Miskin di Indonesia Sebagai Upaya Pengentasan Kemiskinan dalam Menghadapi Revolusi Industri 4.0. CESS (Journal of Computer Engineering System and Science), 4(2), 198–207.
Wanto, A., & Hardinata, J. T. (2020). Estimations of Indonesian poor people as poverty reduction efforts facing industrial revolution 4 . 0. IOP Conference Series: Materials Science and Engineering, 725(1), 1–8. https://doi.org/10.1088/1757-899X/725/1/012114
Wanto, A., Hartama, D., Bhawika, G. W., Chikmawati, Z., Hutauruk, D. S., Siregar, P. H., … Windarto, A. P. (2019). Model of Artificial Neural Networks in Predictions of Corn Productivity in an Effort to Overcome Imports in Indonesia. Journal of Physics: Conference Series, 1339(1), 1–6. https://doi.org/10.1088/1742-6596/1339/1/012057
Wanto, A., Parulian, P., Siahaan, H., Windarto, A. P., Afriliansyah, T., Saputra, W., … Irfan Sudahri Damanik. (2019). Analysis of the Accuracy Batch Training Method in Viewing Indonesian Fisheries Cultivation Company Development. Journal of Physics: Conference Series, 1255(1), 1–6. https://doi.org/10.1088/1742-6596/1255/1/012003
Windarto, A. P., Nasution, D., Wanto, A., Tambunan, F., Hasibuan, M. S., Siregar, M. N. H., … Nofriansyah, D. (2020). Jaringan Saraf Tiruan: Algoritma Prediksi dan Implementasi.
Zuhdiyaty, N., & Kaluge, D. (2017). Analisis Faktor-faktor yang Mempengaruhi Kemiskinan di Indonesia Selama Lima Tahun Terakhir (Studi Kasus Pada 33 Provinsi). Jurnal Jibeka, 11(2), 27–31.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Algoritma Backpropagation dalam Memprediksi Jumlah Angka Kemiskinan di Provinsi Sumatera Utara
Pages: 55-63
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).