Penerapan K-Means Clustering Untuk Pengelompokan Penyebaran Demam Berdarah Dengue (DBD) Di Kabupaten Deli Serdang


  • Erica Melysa Sembiring * Mail Universitas Budi Darma, Medan, Indonesia
  • (*) Corresponding Author
Keywords: Data Mining; Dengue Hemorrhagic Fever; K-Means Clustering

Abstract

DBD is a disease that spread rapidly. Usually if there is an area affected by dengue fever, it is likely to spread to other people in the area. Due to the large number of DBD sufferers, so much data is collected and processing needs to be done on these data, such as the grouping of DBD sufferers data with the aim of focusing vector control in areas that are vulnerable to DBD. The area will be the main priority to carry out socialization related to the handling of DBD. Data mining is a series of processes to get useful information from large database warehouses. One function of the data mining process for finding groups or group identification is Clustering. There are two types of clustering methods, namely hierarchical clustering and non-hierarchical clustering, commonly called Kmeans. K-Means Clustering begins by determining the number of clusters first. The results obtained from grouping the data are in the form of areas that have the highest DBD potential in Deli Serdang. By using clustering method to do calculations, it can help solve problems in Deli Serdang Regency in classifying the data of DBD sufferers which is still done manually

Downloads

Download data is not yet available.

References

E. Buulolo, Data Mining Untuk Perguruan Tinggi. Deepublish, 2020.

F. Tambunan, “Implementation of Data Mining using the Clustering Method (Case: Region of the Actors of Theft Crime by Province),” IJISTECH (International J. Inf. Syst. Technol., vol. 2, no. 2, p. 75, 2019.

A. P. Windarto, U. Indriani, M. R. Raharjo, and L. S. Dewi, “Bagian 1 : Kombinasi Metode Klastering dan Klasifikasi ( Kasus Pandemi Covid-19 di Indonesia ),” J. Media Inform. Budidarma, vol. 4, no. 3, pp. 855–862, 2020.

A. Widiastari, Solikhun, and Irawan, “Analisa Datamining dengan Metode Klasifikasi C4 . 5 Sebagai Faktor Penyebab Tanah Longsor,” J. Comput. Syst. Informatics, vol. 2, no. 3, pp. 247–255, 2021.

H. Sulastri and A. I. Gufroni, “Penerapan Data Mining Dalam Pengelompokan Penderita Thalassaemia,” J. Nas. Teknol. dan Sist. Inf., vol. 3, no. 2, pp. 299–305, 2017.

R. W. Sari and D. Hartama, “Data Mining : Algoritma K-Means Pada Pengelompokkan Wisata Asing ke Indonesia Menurut Provinsi,” Semin. Nas. Sains Teknol. Inf., pp. 322–326, 2018.

A. P. Windarto, “Implementation of Data Mining on Rice Imports by Major Country of Origin Using Algorithm Using K-Means Clustering Method,” Int. J. Artif. Intell. Res., vol. 1, no. 2, p. 26, 2017.

K. D. R. Sianipar, S. W. Siahaan, M. Siregar, and P. P. P. A. N. W. F. I. R. H. Zer, “Penerapan Algoritma K-Means Dalam Menentukan Tingkat Kepuasan Mahasiswa Terhadap Pembelajaran Online,” Infomatek, vol. 22, no. 1, pp. 23–30, 2020.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan K-Means Clustering Untuk Pengelompokan Penyebaran Demam Berdarah Dengue (DBD) Di Kabupaten Deli Serdang

Dimensions Badge
Article History
Published: 2022-04-30
Abstract View: 305 times
PDF Download: 588 times
Section
Articles