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Abstrak—Ketimpangan kelas yang sangat ekstrem pada dataset BankSim (1,2% fraud) menjadi hambatan utama dalam membangun
sistem deteksi yang andal. Penelitian ini mengusulkan integrasi arsitektur Deep Learning TabTransformer dengan teknik
oversampling generatif Conditional Tabular GAN (CTGAN) untuk mengatasi bias kelas mayoritas. Hasil evaluasi kualitas data
menunjukkan bahwa CTGAN mampu memproduksi data sintetis dengan skor kualitas keseluruhan mencapai 90,05% dan tingkat
korelasi pasangan fitur sebesar 91,63%. Temuan eksperimental membuktikan bahwa model usulan memberikan performa yang
paling superior dengan capaian metrik F1-Score sebesar 85,34%, Recall 81,39%, serta Balanced Accuracy mencapai 90,64%. Hasil
ini secara signifikan melampaui teknik SMOTE yang mencatatkan F1-Score sebesar 83,99% namun mengalami kegagalan dalam
kalibrasi probabilitas dengan ambang batas ekstrem sebesar 0,98. Sebaliknya, skenario CTGAN menunjukkan stabilitas ambang
batas keputusan yang efisien pada nilai 0,46. Validasi melalui analisis SHAP mengonfirmasi bahwa variabel rekayasa fitur seperti
merchantRisk, custStepDiff, dan amtZScoreByCat memberikan kontribusi paling dominan terhadap prediksi model. Penelitian ini
menyimpulkan bahwa sinergi paradigma Data-Centric Al melalui pendekatan hibrida generatif mampu mewujudkan model
klasifikasi yang tangguh, presisi, serta memiliki akuntabilitas tinggi untuk perlindungan sektor perbankan digital.

Kata Kunci: Deteksi Fraud; TabTransformer; CTGAN; Rekayasa Fitur; SHAP

Abstract—Extreme class imbalance in the BankSim dataset (1.2% fraud) is a major hurdle to building reliable detection systems. This
study proposes the integration of the TabTransformer architecture with the Conditional Tabular GAN (CTGAN) oversampling
technique to address majority class bias. Data quality evaluations indicate that CTGAN produces synthetic data with an overall
quality score of 90.05% and a column pair correlation trend of 91.63%. Experimental findings prove the proposed model delivers
superior performance, achieving an F1-Score of 85.34%, a Recall of 81.39%, and a Balanced Accuracy of 90.64%. These results
significantly outperform the SMOTE technique, which recorded an F1-Score of 83.99% but suffered from probability calibration
failure with an extreme optimal threshold of 0.98. In contrast, the CTGAN scenario demonstrates efficient decision threshold
stability at 0.46. Validation through SHAP analysis confirms that engineered variables such as merchantRisk, custStepDiff, and
amtZScoreByCat provide dominant contributions to model predictions. This research concludes that the synergy of the Data-Centric
Al paradigm facilitates the creation of robust, precise, and highly accountable classification models for digital banking protection
within financial transaction systems.
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1. PENDAHULUAN

Pada era transformasi digital saat ini, lanskap transaksi finansial telah bergeser dari metode konvensional menuju
ekosistem digital yang serba cepat. Kemudahan ini memungkinkan aktivitas ekonomi dilakukan tanpa batasan waktu,
sehingga mendorong adopsi sistem pembayaran digital secara masif. Berdasarkan Laporan Kebijakan Moneter Triwulan
IV 2024 yang dirilis oleh Bank Indonesia (2024), volume transaksi digital sepanjang tahun 2024 mencapai angka
fenomenal sebesar 34,5 miliar transaksi, dengan indeks pertumbuhan 36,1% dibandingkan tahun sebelumnya. Data ini
mencerminkan ketergantungan besar masyarakat terhadap infrastruktur teknologi finansial saat ini. Namun, di balik
efisiensi tersebut, muncul ancaman serius berupa tindak kecurangan transaksi atau fraud yang dapat mengganggu
stabilitas ekosistem ekonomi.

Secara fundamental, fraud merupakan manifestasi kecurangan yang dilakukan oleh entitas tertentu melalui
pencurian identitas, transaksi palsu, dan manipulasi data untuk mengelabui protokol keamanan. Dampak dari tindakan
ini sangat destruktif, terutama pada kerugian finansial yang harus ditanggung korban maupun lembaga keuangan
(Priatna dkk., 2025). Fenomena ini sering dipicu oleh kurangnya kewaspadaan pengguna dalam berinteraksi dengan
teknologi, yang membuka celah bagi modus social engineering dan penyebaran malware (Yuhertiana & Amin, 2024).
Merujuk pada analisis World Bank Group (2023), pola fraud terus berevolusi seiring kemajuan teknologi informasi.
Kondisi ini terkonfirmasi oleh data Otoritas Jasa Keuangan (OJK) yang mencatat 42.257 laporan penipuan hingga 9
Februari 2025, dengan akumulasi kerugian mencapai Rp700,2 miliar (Putri, 2025). Skala kerugian ini menegaskan
bahwa ancaman fraud memerlukan solusi deteksi yang cerdas, adaptif, dan berkelanjutan.

Sebagai respons, berbagai institusi memanfaatkan teknologi Artificial Intelligence (Al) untuk membangun sistem
deteksi cerdas yang mampu mengenali pola kecurangan secara otomatis (Odeyemi dkk., 2024). Penelitian terdahulu
oleh Dharmana dkk. (2024) serta Bonde dan Bichanga (2025) telah menunjukkan efektivitas model Machine Learning
hibrida dalam mengidentifikasi anomali transaksi. Meskipun demikian, masih terdapat ruang pengembangan pada aspek
ketajaman deteksi. Karakteristik data fraud melibatkan interaksi kompleks antara profil demografis (kategorikal) dan
pola transaksional (numerik). Hal ini menuntut model yang mampu memahami relasi kontekstual tabular secara utuh.
Studi Padhi dkk. (2021) menunjukkan bahwa arsitektur Transformer memiliki potensi besar dalam memodelkan
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struktur data tabular yang kompleks melalui mekanisme self-attention. Mekanisme ini memungkinkan model
menangkap hubungan antar-atribut secara dinamis berdasarkan profil entitas yang terlibat.

Oleh karena itu, penelitian ini mengusulkan algoritma TabTransformer (Huang dkk., 2020) untuk klasifikasi
fraud. Keunggulan utamanya terletak pada penggunaan mekanisme self-attention untuk mengekstraksi hubungan
kontekstual mendalam antar-fitur kategorikal yang sering terabaikan oleh model konvensional. Efektivitas arsitektur ini
diperkuat oleh penelitian Conteh dan Zhou (2025) yang mencatat F1-Score sebesar 99,94% melalui pendekatan Cost-
Sensitive Learning. Namun, tantangan mendasar dalam Klasifikasi fraud adalah ketidakseimbangan data (class
imbalance), di mana sampel kecurangan jauh lebih sedikit dibandingkan transaksi normal (Assabil, 2024). Fenomena
ini termanifestasi nyata pada dataset BankSim (Lopez-Rojas & Axelsson, 2014) yang merepresentasikan distribusi
ekstrem dunia nyata, dengan transaksi fraud hanya berjumlah 1,2%. Jika tidak ditangani, model cenderung bias
terhadap kelas mayoritas dan gagal mengenali pola kecurangan secara akurat (Ibrahim & Alfauzan, 2025).

Guna menanggulangi kendala tersebut, strategi penyeimbangan distribusi kelas melalui oversampling menjadi
krusial. Dalam berbagai literatur, Synthetic Minority Over-sampling Technique (SMOTE) sering menjadi rujukan
melalui mekanisme interpolasi linear antar-sampel (Chawla dkk., 2002). Kendati demikian, SMOTE memiliki limitasi
karena pembentukan data sintetisnya hanya terbatas pada garis lurus antar-titik, yang berpotensi memicu noise dan
kegagalan dalam merepresentasikan variabilitas data kompleks. Sebagai solusi inovatif, Xu dkk. (2019)
memperkenalkan Conditional Tabular GAN (CTGAN) berbasis Deep Learning. Keunggulan CTGAN terletak pada
kapasitasnya mengekstraksi distribusi probabilitas data secara utuh melalui prinsip Generative Adversarial Networks
(Goodfellow dkk., 2016). Pendekatan ini divalidasi oleh Nugraha dkk. (2022) dengan performa di atas 90% dibanding
SMOTE. Temuan ini selaras dengan studi Alshawi (2023) dan Patil (2021) yang menegaskan keunggulan CTGAN
dalam memodelkan distribusi data rumit untuk klasifikasi.

Kesenjangan penelitian (research gap) dalam studi ini terletak pada masih jarangnya integrasi antara pendekatan
generatif modern CTGAN dengan arsitektur berbasis attention seperti TabTransformer pada dataset dengan
ketimpangan ekstrem. Mayoritas penelitian sebelumnya, seperti Bonde dan Bichanga (2025), masih berfokus pada
kombinasi SMOTE dengan algoritma ensemble tree seperti Random Forest atau XGBoost. Meskipun efektif, model
ensemble tree memiliki keterbatasan dalam menangkap hubungan semantik fitur kategorikal dibandingkan mekanisme
attention. Secara spesifik, urgensi penerapan strategi hibrida ini didorong oleh kompleksitas topologi data fraud yang
sering kali menempati ruang manifold non-linear yang sulit dijangkau oleh interpolasi sederhana. Dalam konteks ini,
CTGAN bertindak lebih dari sekadar penambah jumlah sampel, ia merekonstruksi korelasi antar-variabel yang valid
secara statistik, sehingga mencegah distorsi informasi yang kerap terjadi pada metode klasik. Data sintetis berkualitas
tinggi tersebut kemudian dioptimalkan oleh mekanisme Contextual Embeddings pada TabTransformer, yang mampu
mengubah fitur kategorikal berdimensi tinggi menjadi representasi vektor yang padat dan bermakna. Sinergi antara
fidelitas data dari generator dan kapasitas representasi dari model berbasis attention ini dihipotesiskan mampu
memecahkan masalah vanishing gradient pada data minoritas yang sering dialami oleh Deep Learning standar.
Kontribusi ilmiah penelitian ini adalah menghadirkan pendekatan hibrida Deep Generative dan Self-Attention untuk
mengisi celah tersebut. Pendekatan ini diharapkan menghasilkan model deteksi yang lebih robust dan akurat dalam
mengenali pola kecurangan di tengah kondisi data yang tidak seimbang, sekaligus menekan risiko False Negative yang
menjadi parameter paling kritis dalam mitigasi kerugian finansial perbankan. Selain itu, validasi melalui pendekatan
Explainable Al (XAIl) (Lundberg & Lee, 2017) turut diintegrasikan guna menjamin bahwa peningkatan performa
tersebut tetap mematuhi prinsip transparansi algoritma yang diwajibkan dalam regulasi industri keuangan, menjadikan
usulan ini sebagai solusi yang komprehensif baik dari sisi akurasi teknis maupun akuntabilitas operasional.

2. METODOLOGI PENELITIAN

Penelitian eksperimental ini mengklasifikasi fraud melalui tahapan sistematis yang meliputi data collection, pre-
processing, splitting, feature engineering, oversampling, training model, hingga model evaluation & interpretation
(SHAP), sebagaimana diilustrasikan pada Gambar 1.

Train L - Oversampling Model
Dataset ™ (70%) | Train Fitr *|(cTeAN) ™ TabTransformer)
. val Feature . ' -
Pre-processing | | (15%) —’[ Engineering }» Val Fitur —)[ Training Model }, Testing Model Result
Test Evaluation &
Split Data H 15% ~ ey Test Fitur Interpretation
(15%) (SHAP)

Gambar 1. Diagram Alir Penelitian

Pemilihan algoritma TabTransformer didasarkan pada kemampuannya dalam menangkap hubungan kontekstual
pada data tabular yang sering kali terabaikan oleh model tree-based konvensional maupun Deep Learning standar
(MLP). Sementara itu, CTGAN dipilih karena keunggulannya dibandingkan dengan SMOTE dalam memodelkan
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distribusi probabilitas yang kompleks. Penelitian ini menghipotesiskan bahwa integrasi pendekatan generatif (CTGAN)
dengan arsitektur berbasis atensi (TabTransformer) akan menghasilkan model deteksi fraud yang tidak hanya memiliki
sensitivitas tinggi (Recall) terhadap kelas minoritas, tetapi juga menjaga presisi (Precision) dengan menekan angka
false positive dibandingkan metode interpolasi tradisional.

2.1 Data Collection

Penelitian kali ini menggunakan dataset BankSim (Lopez-Rojas & Axelsson, 2014), yang terdiri dari 594.643 log
transaksi hasil simulasi bank di Spanyol. Penggunaan data sintetis ini dipilih sebagai alternatif standar mengingat
batasan privasi ketat pada data finansial riil. Dataset ini memuat 9 fitur (7 kategorikal dan 2 numerik) dengan spesifikasi
lengkap yang dirangkum pada Tabel 1.

Tabel 1. Spesifikasi Variabel pada Dataset

Fitur Tipe Data  Jumlah Unik Keterangan
step int64 180 Langkah Waktu Simulasi
customer object 4112 ID Customer
age object 8 Kategori Usia
gender object 4 Jenis Kelamin
zipCodeOri object 1 Kode Pos Customer
merchant object 50 ID Merchant
zipMerchant object 1 Kode Pos Merchant
category object 15 Kategori Merchant
amount float64 23.767 Nominal Uang
fraud int64 2 Target

Tantangan utama dari dataset ini adalah ketidakseimbangan kelas (imbalanced data) yang ekstrem, di mana
proporsi fraud hanya sebesar 1,2% dibandingkan 98,8% transaksi normal. Untuk visualisasi kelas tersebut disajikan
pada Gambar 2.

Non-Fraud vs Fraud

600k
Sk
Ak
300k

200k

Number of Transactions

100k

T7.200(1.2%)

Non-Fraud Fraud

Transaction Status
Gambar 2. Distribusi Kelas Target Pada Fitur Fraud

Berdasarkan visualisasi distribusi tersebut, terlihat jelas dominasi absolut kelas mayoritas. Ketimpangan ekstrem
ini mengindikasikan bahwa tanpa penanganan khusus, model akan memiliki bias yang kuat terhadap transaksi normal
dan berpotensi gagal mengenali pola fraud.

2.2 Pre-processing & Initial Features

Sebagai referensi kondisi awal, visualisasi sampel data mentah (raw data) sebelum pemrosesan disajikan pada Gambar
3.

step customer age gender zipcodeOrxi merchant zipMerxchant category amount Tfraud
0 0 'C1093826151' ‘4! ™' '28007" 'M348934600' '28007' ‘es_transportation’ 4.55 0
1 0 "C352968107" 2 ‘M 28007 'M348934600° "28007' ‘es_transportation’ 39.68 ]
2 0 'C2054744914' ‘4! 'F' '28007" 'M1823072687' '28007' ‘es_transportation’ 26.89 0
3 0 'C1760612790" '3 ‘M 28007 'M348934600° "28007' ‘es_transportation’ 17.25 ]
4 0 '"C757503768" = M ‘28007 'M348934600' "28007' ‘es_transportation’ 35.72 o]

Gambar 3. Sampel Raw Data BankSim
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Berdasarkan analisis statistik pada data tersebut, proses pembersihan dilakukan dengan membuang fitur
zipCodeOri dan zipCodeMerchant yang memiliki variansi nol (cardinality = 1), diikuti standarisasi format fitur
kategorikal. Selanjutnya, fitur temporal custStepDiff dan merchStepDiff diinisialisasi guna menangkap dinamika jeda
waktu antar transaksi. Nilai ini dihitung sebagai selisih step saat ini dengan step sebelumnya untuk entitas yang sama,
mengacu pada Persamaan (1).

At;=Step-Step(i, t-1) (1)

Operasi ini secara alami menghasilkan nilai kosong (NaN) pada transaksi pertama entitas karena ketiadaan
referensi waktu sebelumnya, sebagaimana diilustrasikan pada Tabel 2. Nilai NaN ini sengaja dipertahankan sementara
dan baru ditangani melalui imputasi pasca-splitting untuk mencegah kebocoran data (data leakage).

Tabel 2. Representasi Data Pasca-Inisialisasi Fitur Waktu

step customer custStepDiff merchant merchStepDiff

0 C1093826151 NaN M348934600 NaN
0 C352968107 NaN M348934600 0.0
0 C2054744914 NaN M1823072687 NaN
0 C1760612790 NaN M348934600 0.0
0 C757503768 NaN M348934600 0.0

2.3 Splitting Data

Setelah melalui tahap pre-processing, splitting data dilakukan dalam dua tahap menggunakan teknik stratified shuffle
split untuk menghasilkan subset train data, val data, dan test data dengan rasio 70:15:15. Penggunaan teknik ini
menjamin bahwa setiap data merepresentasikan distribusi kelas asli, terutama kelas fraud yang bersifat minoritas.
Rincian mengenai proporsi jumlah data untuk setiap subset, baik kelas non-fraud maupun fraud, dipaparkan secara
terperinci pada Tabel 3.

Tabel 3. Proporsi Kelas Target pada Setiap Subset Data

Data Jumlah Data Jumlah Fraud Rasio Persentase Fraud

Train 416.250 5.040 1.21%
Val 89.197 1.080 1.21%
Test 89.196 1.080 1.21%

Hasil pembagian tersebut mengonfirmasi bahwa teknik stratified shuffle split berhasil mempertahankan
konsistensi rasio fraud sebesar 1,21% di seluruh subset. Konsistensi ini krusial untuk menjamin validitas evaluasi
model agar tidak bias akibat pergeseran distribusi data.

2.4 Feature Engineering

Pada tahapan ini, data latih (training set) digunakan untuk merekayasa fitur guna mendapatkan representasi yang lebih
mendalam dari data mentah. Parameter hasil perhitungan dari data latih kemudian diterapkan pada data validasi dan
data uji. Pendekatan ini diterapkan secara ketat untuk mencegah kebocoran data (data leakage) yang dapat
menyebabkan bias pada evaluasi model. Proses ini menghasilkan 13 fitur baru yang dikelompokkan sebagai berikut:

2.5 Temporal Imputation

Pada tahapan sebelumnya, teridentifikasi bahwa fitur custStepDiff dan merchStepDiff memiliki nilai kosong (NaN) pada
setiap transaksi pertama. Oleh karena itu, penanganan dilakukan dengan teknik imputasi menggunakan nilai median
global dari data latih (training set). Strategi imputasi median dipilih karena lebih resisten terhadap pencilan (outliers)
dibandingkan rata-rata (mean). Hal ini dikonfirmasi oleh statistik data latih yang menunjukkan skewness signifikan pada
fitur selisih waktu (custStepDiff Mean: 1.21 vs Median: 1.00; merchStepDiff Mean: 0.01 vs Median: 0.00). Penggunaan
median (1.00 dan 0.00) memastikan validitas data tetap terjaga tanpa distorsi nilai ekstrem.

2.5.1 Frequency Encoding

Pada tahapan ini, frekuensi kemunculan entitas (customer dan merchant) pada data latih dihitung dan dipetakan menjadi
fitur custFreq dan merchFreq. Untuk menangani data baru (unseen data) yang tidak memiliki riwayat, diterapkan
mekanisme imputasi menggunakan nilai median global guna menghindari bias akibat distribusi long-tail, sebagaimana
diformulasikan pada Persamaan (2).

Count(x, Derqin) jika X € Dirain @)
Median(Fyyqin) jika x € Dirgin

Pemilihan median dinilai lebih robust dibandingkan rata-rata (mean) karena teridentifikasi adanya kesenjangan
ekstrem pada distribusi merchant (Mean: 8.325 vs Median: 416). Disparitas ini menunjukkan bahwa rata-rata terdistorsi

Freq(x)= {
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oleh segelintir merchant besar, sehingga penggunaan median memberikan estimasi yang lebih stabil untuk entitas yang
belum dikenali.

2.5.2 Velocity

Pada tahapan ini, fitur custVelocity dan merchVelocity dikonstruksi untuk menangkap pola kecepatan pengurasan dana.
Nilai ini dihitung sebagai rasio nominal terhadap jeda waktu (4t;), dengan penambahan konstanta 1 pada penyebut
guna mencegah pembagian dengan nol, sebagaimana Persamaan (3).

. A
Velocity; ;= TZ?:T 3

Analisis distribusi menunjukkan bahwa median velocity transaksi fraud jauh melampaui transaksi normal
(Customer: 139,10 vs 12,85; Merchant: 285,26 vs 26,46). Berdasarkan disparitas ini, fitur distCustVeloFraud dan
distMerchVeloFraud dibuat untuk mengukur jarak absolut velocity saat ini terhadap profil median fraud, mengikuti
Persamaan (4).

Distilt:|Velocityi‘t-v}mud | 4
2.5.3 ZScore & Distance
Pada tahapan ini, fitur amtZScoreByCat dikonstruksi menggunakan teknik Z-Score per kategori (category-wise

standardization) untuk mengukur tingkat ekstremitas penyimpangan nominal transaksi dari rata-rata kategori

belanjanya. Konstanta e=10"¢ ditambahkan pada penyebut guna menjamin stabilitas numerik, sebagaimana
diformulasikan pada Persamaan (5).

_ Amount¢-Ucat
Zt_ Ocatt€ (5)
Selanjutnya, berdasarkan temuan bahwa median transaksi fraud jauh lebih tinggi dibandingkan normal (317,92
vs 26,58), dibuat fitur distAmtFraudMed. Fitur ini mengukur jarak absolut antara nominal transaksi saat ini dengan
profil median fraud untuk menangkap anomali nilai tinggi, mengikuti Persamaan (6).

Distt=|Amountt-A' fraud | ©
2.5.4 Risk Scoring

Pada tahapan ini, variabel kategorikal (merchant, category, dan cohort) dikonversi menjadi skor risiko numerik
(merchantRisk, categoryRisk, cohortRisk) menggunakan teknik Target Encoding. Pendekatan ini menghitung
probabilitas terjadinya fraud (rata-rata target) untuk setiap entitas. Guna memitigasi overfitting pada kategori dengan
frekuensi rendah (rare labels), diterapkan mekanisme smoothing dengan parameter a=10. Teknik ini menyeimbangkan
statistik lokal kategori dengan rata-rata global untuk meredam noise, sebagaimana diformulasikan pada Persamaan (7).

. _ (n'#local)+(a'#globa1)
isk(x)= o @)
Dalam formulasi tersebut, n merepresentasikan jumlah transaksi pada kategori terkait, sedangkan p;,.,; dan
Kgiobar Masing-masing menyatakan rata-rata target (probabilitas fraud) pada tingkat kategori dan keseluruhan data.

Mekanisme ini juga menjamin stabilitas model terhadap data baru (unseen data), di mana kategori yang tidak dikenali
otomatis diisi dengan nilai global.

2.6 Oversampling

Setelah melalui proses feature engineering, dilakukan tahapan oversampling data untuk menangani ketidakseimbangan
data, dimana pada penelitian ini diterapkan metode oversampling menggunakan algoritma CTGAN (Conditional
Tabular GAN). Proses ini tidak sekadar menduplikasi data, melainkan mensintesis data baru berdasarkan distribusi
probabilitas bersyarat dari kelas minoritas (fraud).

Mekanisme pembentukan data sintetis diawali dengan menghitung probabilitas setiap baris (row) berdasarkan
kondisi kolom kategorikal tertentu (D;-). Dalam penelitian ini, kondisi dikunci pada label fraud, di mana
probabilitasnya dihitung mengikuti persamaan yang diformulasikan pada Persamaan (8).

P(tow)=Xep. P (row|D;+=k")P(D;»=k) (®)

Berdasarkan probabilitas tersebut, generator kemudian melakukan pengambilan sampel (sampling) secara
spesifik pada kategori target (k*) untuk menghasilkan data sintetis (#) yang memiliki karakteristik fraud. Proses
sampling ini diformulasikan dalam Persamaan (9).

F~ P; (row|Di*=k*) ©)
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Tahap pelatihan sistem ini melibatkan optimasi melalui skema persaingan min-max antara generator g dan
discriminator d. Dalam mekanisme tersebut, generator dipacu untuk memproduksi data yang mampu meminimalkan
akurasi deteksi discriminator, sementara discriminator dilatih secara intensif guna memaksimalkan kemampuannya
dalam menolak setiap sampel sintetis. Adapun formulasi dari fungsi objektif yang mendasari proses optimisasi tersebut
dijabarkan secara matematis melalui Persamaan (10).

nzinmng(g, A)=Eyx-p,,,,[logd ()]+E, _p, [log (1-d(g(z)))] (10)

Tahapan implementasi diawali dengan penyusunan skema metadata guna memisahkan antara atribut kategorikal
dan numerik, yang dilanjutkan dengan proses pelatihan model selama 1.000 epoch. Rincian konfigurasi hyperparameter
yang diterapkan dirangkum pada Tabel 4.

Tabel 4.Konfigurasi Hyperparameter CTGAN

Parameter Nilai Keterangan
Epochs 1.000 Jumlah iterasi pelatihan penuh
Batch Size 500 Jumlah sampel per update gradien
PAC 10 Jumlah sampel per paket diskriminator
Embedding Dim 128 Dimensi representasi fitur diskrit
Generator Dim (256, 256) Dimensi hidden layer generator
Discriminator Dim (256, 256) Dimensi hidden layer diskriminator
Learning Rate 2 x10* Laju pembelajaran (G dan D)

Penerapan parameter tersebut, khususnya jumlah epoch yang tinggi (1.000) dan dimensi embedding (128),
ditujukan untuk memastikan generator memiliki kapasitas yang memadai dalam mempelajari distribusi data yang
kompleks, sekaligus menjaga stabilitas gradien selama proses sintesis berlangsung.

2.7 Training Model

Pada tahapan ini, dilakukan pelatihan model klasifikasi menggunakan algoritma TabTransformer (Huang dkk., 2020).
Berbeda dengan MLP standar yang memperlakukan semua fitur secara independen, arsitektur ini dipilih karena
keunggulannya dalam memodelkan interaksi antar fitur kategorikal secara mendalam melalui mekanisme attention.
Secara operasional, fitur kategorikal ditransformasi menjadi dense vectors melalui lapisan embedding, sedangkan fitur
numerikal distandarisasi menggunakan Layer Normalization.

Inti kekuatan model ini terletak pada mekanisme Multi-Head Self-Attention di jalur kategorikal yang bertugas
menangkap ketergantungan kontekstual antar fitur. Mekanisme ini menghitung bobot secara dinamis mengikuti
formulasi persamaan (11).

. kT
Attention(Q, K,V)=softmax <E) % (11)

Output dari lapisan transformer kemudian digabungkan (concatenated) dengan fitur numerikal untuk
menghasilkan prediksi akhir melalui lapisan Multi-Layer Perceptron (MLP), sebagaimana diilustrasikan pada Gambar
4.

Loss

Multi-Layer Perceptron

+

[ Concatenation ]

Transformer - Add & Norm
=N !

Multi-Head

Attention

Column Layer
Embedding Normalization

Categorical Features Continuous Features
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Gambar 4.Representasi Struktural Model TabTransformer
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Skema arsitektur tersebut memperlihatkan mekanisme pemrosesan hibrida, di mana fitur kategorikal
mendapatkan perhatian khusus melalui self-attention untuk menangkap konteks semantik, sebelum disatukan dengan
fitur numerik untuk klasifikasi akhir.

Adapun Proses pelatihan dijalankan menggunakan fungsi kerugian Binary Cross Entropy with Logits dan
dioptimasi menggunakan algoritma AdamW dengan mekanisme learning rate scheduler (ReduceLROnPlateau). Guna
memaksimalkan performa pada kelas minoritas, ambang batas keputusan (threshold) dievaluasi secara dinamis
berdasarkan F1-Score terbaik pada data validasi. Rincian konfigurasi hyperparameter yang digunakan dirangkum
dalam Tabel 5.

Tabel 5.Konfigurasi Hyperparameter Algoritma TabTransformer

Parameter Nilai Keterangan
Embedding Dim 32 Dimensi vektor fitur kategorikal
Transformer Depth 6 Jumlah lapisan encoder transformer
Attention Heads 8 Jumlah head pada mekanisme atensi
Attention Dropout 0.1 Probabilitas dropout pada lapisan atensi
FF Dropout 0.1 Probabilitas dropout pada feed-forward
MLP Hidden Layers -128,64 Dimensi lapisan tersembunyi (hasil mults 4 & 2)
MLP Activation ReLU Fungsi aktivasi pada lapisan MLP
Output Dim 1 Dimensi output (Klasifikasi Biner)
Batch Size 128 Ukuran sampel per iterasi
Learning Rate 1x 103 Laju pembelajaran awal (AdamW)
Weight Decay 1x 10 Regularisasi bobot optimizer
Epochs 25 Total durasi pelatihan
Loss Function BCEWithLogitsLoss Fungsi kerugian entropi biner
LR Scheduler ReduceLROnPlateau Penyesuaian learning rate berdasarkan performa validasi

Kombinasi parameter tersebut, khususnya penggunaan weight decay dan dropout, digunakan secara spesifik
untuk mencegah overfitting, sementara scheduler adaptif memastikan konvergensi model yang stabil pada loss surface
yang kompleks.

2.8 Model Evaluation & Interpretation (SHAP)

Evaluasi metode dilakukan secara komprehensif mencakup kinerja prediktif dan interpretabilitas model menggunakan
SHapley Additive exPlanations (SHAP). Pendekatan ganda ini diterapkan untuk memastikan model TabTransformer
tidak hanya unggul secara statistik, tetapi juga memenuhi standar akuntabilitas perbankan.

2.8.1 Comparative Experimental Scenarios

Untuk mengukur dampak pendekatan oversampling secara objektif, penelitian ini merancang tiga skenario eksperimen.

Seluruh skenario divalidasi menggunakan data uji (test set) asli yang tidak dimodifikasi untuk mencegah bias evaluasi.

1. Baseline Scenario (Imbalanced Data): Model dilatih menggunakan data asli tanpa modifikasi distribusi sebagai
kontrol batas bawah (lower bound) untuk mengukur kegagalan deteksi pada kondisi ketimpangan ekstrem.

2. Comparative Scenario (SMOTE): Model dilatih menggunakan data yang diseimbangkan dengan teknik SMOTE
sebagai pembanding standar industri.

3. Proposed Scenario (CTGAN): Model dilatih menggunakan data campuran sintetis CTGAN untuk menguji hipotesis
bahwa model generatif mampu menangkap distribusi probabilitas gabungan (joint distribution) lebih baik
dibandingkan interpolasi linear.

Perlu ditekankan bahwa seluruh skenario di atas diuji menggunakan data uji (test set) yang tidak dimodifikasi
oleh teknik oversampling. Langkah ini diterapkan secara ketat untuk mencegah bias evaluasi, memastikan model diuji
pada kondisi distribusi alami (real-world distribution) dimana proporsi fraud tetap minoritas.

2.8.2 Threshold Optimization & Evaluation Metrics

Tahap evaluasi diawali dengan memulihkan bobot model paling optimal (best checkpoint) hasil fase validasi guna
mengantisipasi efek overfitting pasca pelatihan. Dalam menentukan klasifikasi akhir, penggunaan ambang batas standar
sebesar 0,5 dipandang kurang efektif untuk menangani data dengan ketimpangan kelas yang ekstrem. Sebagai
solusinya, diterapkan mekanisme Threshold Tuning guna mengidentifikasi titik batas probabilitas yang paling dinamis.
Pendekatan ini berfokus pada maksimisasi metrik F1-Score, yang secara esensial menyatukan nilai precision dan recall
ke dalam satu keseimbangan numerik. Melalui strategi ini, sistem mampu menekan risiko transaksi kecurangan yang
tidak terdeteksi (False Negative) dengan tetap menjaga stabilitas alarm palsu. Klasifikasi akhir kemudian ditentukan
berdasarkan apakah probabilitas sampel melampaui ambang batas optimal yang telah ditetapkan tersebut.

Sebagai konsekuensi dari pendekatan ini, akurasi global tidak dijadikan acuan utama. Evaluasi difokuskan pada
metrik yang sensitif terhadap kelas minoritas, yaitu Precision, Recall, F1-Score, dan Balanced Accuracy, serta analisis
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kurva ROC (Receiver Operating Characteristic) untuk mengukur kemampuan diskriminatif model secara menyeluruh.
Formulasi metrik evaluasi dapat dilihat pada persamaan (12), (13), (14), (15), dan (16).

TPT:JFP (12)
T (13)
Sensitivity;rSpecificity (15)
J; TPR(fpr)d(fpr) (16)

2.8.3 Shapley Additive exPlanations (SHAP)

Meskipun model Deep Learning seperti TabTransformer memiliki kinerja tinggi, arsitekturnya yang kompleks sering
dikategorikan sebagai "kotak hitam" (black-box). Untuk mengatasi kendala interpretabilitas ini, diterapkan metode
SHapley Additive exPlanations (SHAP) sebagaimana diperkenalkan oleh Lundberg dan Lee (2017). Metode ini
mengadopsi teori permainan kooperatif (game theory) untuk menghitung kontribusi marginal setiap fitur terhadap hasil
prediksi akhir.

Dalam penelitian ini, analisis SHAP memiliki peran ganda, sebagai alat interpretasi keputusan model dan
sebagai metode validasi fitur. Analisis dilakukan dalam dua tingkatan.

1. Feature Importance: Analisis ini digunakan untuk mengidentifikasi hierarki fitur yang paling dominan dalam
mendeteksi pola fraud secara keseluruhan. Fitur dengan nilai rata-rata SHAP absolut tertinggi dianggap memiliki
pengaruh terbesar. Secara khusus, analisis ini bertujuan untuk memvalidasi efektivitas tahapan Feature Engineering.
Jika fitur-fitur turunan (seperti velocity, risk scores, dan z-score) menduduki peringkat atas dalam summary plot, hal
tersebut menjadi bukti empiris bahwa rekayasa fitur berhasil mengekstraksi informasi krusial yang tidak dapat
ditangkap oleh fitur mentah (raw features).

2. Instance-level Explanation: Analisis ini digunakan untuk membedah alasan keputusan model pada level transaksi
individu. Pendekatan ini memungkinkan analisis why (mengapa) sebuah transaksi spesifik ditandai sebagai fraud,
dengan memvisualisasikan bagaimana kombinasi nilai fitur tertentu mendorong probabilitas prediksi ke arah positif
atau negatif.

Penerapan SHAP ini memastikan bahwa model mempelajari pola logis yang sesuai dengan karakteristik domain
finansial, serta membuktikan bahwa peningkatan kinerja model didorong oleh kualitas fitur yang dikonstruksi, bukan
sekadar menghafal noise pada data latih.

3. HASIL DAN PEMBAHASAN
3.1 Synthetic Data Quality Analysis (CTGAN)

Evaluasi kualitas data sintetis dilakukan menggunakan kerangka kerja Synthetic Data Vault (SDV) untuk menjamin
kemiripan karakteristik statistik antara data hasil generasi dan data asli. Ringkasan hasil evaluasi tersebut disajikan pada
Tabel 6.

Tabel 6. Skor Evaluasi Kualitas Data

Metrik Evaluasi Skor Keterangan
Data Validity 100% Kepatuhan data terhadap batasan nilai (min/max) dan tipe data.
Data Structure 100% Integritas struktur tabel dan kelengkapan kolom.
Column Shapes 89,46% Kemiripan distribusi marginal per fitur (univariate distribution).
Columns Pair Trends 91,63% Kemiripan pola korelasi antar pasangan fitur (bivariate correlation).
Overall Quality Score  90,05% Rata-rata kualitas data sintetis secara menyeluruh.

Evaluasi metrik menunjukkan kinerja model yang optimal dengan overall score mencapai 90,05%. Skor
sempurna tercatat pada validity dan structure data, yang mampu menjamin integritas tipe data dan konsistensi skema
tabel. Secara spesifik, model berhasil mereplikasi fitur target fraud dengan skor 1.0, serta menangkap pola fitur yang
kompleks dari hasil rekayasa seperti custStepDiff dan distMerchVeloFraud dengan skor tinggi berkisar 96-97%.
Meskipun terdapat sedikit variasi pada ekor distribusi fitur merchantRisk dengan skor 82%, dalam hal ini pola korelasi
antar variabel tetap terjaga dengan baik ditunjukkan pada skor pair trends sebesar 91,63%. Secara khusus, skor Column
Shapes sebesar 89,46%—meskipun merupakan metrik terendah dalam evaluasi ini—masih berada jauh di atas ambang
batas toleransi reliabilitas data sintetis. Penurunan minor pada metrik ini merupakan konsekuensi alami dari
kompleksitas distribusi long-tail pada data keuangan, di mana model generatif harus bekerja ekstra keras untuk
menyeimbangkan antara mereplikasi frekuensi transaksi nominal kecil yang dominan dengan transaksi nominal besar
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yang sangat jarang. Namun, fakta bahwa skor ini tetap mendekati 90% menegaskan bahwa CTGAN mampu menangani
tantangan statistical skewness jauh lebih baik dibandingkan metode interpolasi tradisional.

Validitas skor kualitas data di atas tidak terlepas dari stabilitas proses pelatihan model generatif itu sendiri.
Untuk memastikan bahwa CTGAN tidak mengalami kegagalan pelatihan (mode collapse) atau divergensi, dinamika
pembelajaran dipantau melalui pergerakan fungsi kerugian (loss function). Visualisasi riwayat pelatihan Generator dan
Discriminator selama 1.000 epoch dapat dilihat pada Gambar 5.

CTGAN Loss Curve

Loss
z

0 200 400 600 800 1000

Epoch

Gambar 5. Training History CTGAN

Dinamika pembelajaran yang tervisualisasi memperlihatkan kompetisi (min-max game) yang sehat antara
Generator (garis kuning) dan Discriminator (garis tosca). Pada fase awal (0-200 epoch), terjadi fluktuasi tajam yang
menandakan fase eksplorasi ruang vektor, di mana Discriminator masih dengan mudah membedakan data palsu
(ditandai dengan loss yang rendah pada garis tosca). Namun, memasuki pertengahan hingga akhir pelatihan, kedua
kurva mulai mencapai titik keseimbangan (equilibrium). Pola osilasi yang stabil dan saling berhimpit di sekitar titik nol
pada 400 epoch terakhir mengindikasikan bahwa model telah mencapai konvergensi optimal. Hal ini berarti Generator
berhasil memproduksi data sintetis yang cukup realistis sehingga menyulitkan Discriminator untuk membedakannya
dari data asli.

Untuk memvalidasi statistik tersebut, diperlukan visualisasi grafik yang menampilkan estimasi densitas kernel
(Kernel Density Estimation/KDE) yang digunakan pada 3 fitur representatif guna memverifikasi apakah model mampu
menangkap bentuk distribusi data yang variasi. Adapun visualisasinya dapat dilihat pada Gambar 6.

Real Data Synthetic (CTGAN)
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Gambar 6. Perbandingan Distribusi Fitur Amount, Velocity, dan Merchant Risk (Data Riil vs Sintetis)

Visualisasi tersebut memperlihatkan keselarasan topologi yang signifikan antara data sintetis (CTGAN) dan data
asli. Kurva densitas (density curve) menunjukkan kemampuan adaptasi model yang presisi dalam mereplikasi berbagai
bentuk distribusi. Adapun analisis mendalam terhadap karakteristik distribusi pada ketiga fitur representatif tersebut
dipaparkan dalam rincian di bawah ini.

1. Distribution Of Amount: Fitur ini memiliki karakteristik distribusi yang sangat condong (highly skewed). Model
terbukti berhasil menangkap pola global ini, di mana densitas tertinggi terkonsentrasi pada nilai rendah dan
melandai secara gradual ke arah nominal besar membentuk ekor panjang (long-tail). Konsistensi ini membuktikan
bahwa model mampu mereplikasi Kkarakteristik nominal transaksi yang wajar sekaligus mempertahankan
probabilitas kemunculan nilai transaksi besar yang jarang terjadi (rare events).

2. Distribution Of Velocity: Pada fitur ini, terlihat adanya superposisi (himpitan) kurva yang hampir sempurna antara
data sintetis dan data asli. Fenomena visual ini mengonfirmasi validitas skor statistik Column Shapes yang tinggi
(97%) pada evaluasi sebelumnya. Hal ini mengindikasikan bahwa model tidak hanya mempelajari data mentah,
tetapi juga mampu menangkap pola fitur turunan yang kompleks dengan akurasi tinggi tanpa distorsi yang berarti.
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3. Distribution Of Merchant Risk: Fitur ini merepresentasikan pola distribusi multimodal (banyak puncak). Secara
visual, model berhasil mengidentifikasi lokasi klaster risiko utama, yang ditandai dengan puncak densitas pada
rentang nilai 0,4; 0,5; dan 0,8. Meskipun kurva sintetis cenderung memiliki amplitudo yang lebih tajam (over-
sharpening) dibandingkan data asli, struktur utama distribusi tetap terjaga. Hal ini menjamin bahwa informasi
krusial mengenai kategori merchant berisiko tinggi tidak hilang selama proses sintesis.

Secara keseluruhan, analisis visual ini membuktikan bahwa data sintetis yang dihasilkan oleh CTGAN tidak
sekadar melakukan memorisasi (menyalin data), melainkan berhasil mempelajari struktur probabilitas (probability
structure) dari data latih secara mendalam.

3.2 Model Training Analysis

Kinerja pelatihan model TabTransformer dianalisis selama 25 epoch untuk memantau stabilitas metrik dan memastikan
model mampu melakukan generalisasi dengan baik pada data validasi. Visualisasi lengkap mengenai dinamika
pelatihan ini dapat dilihat pada Gambar 7.

Loss & Val Loss F1-Score & Balanced Accuracy
0.92 == s
0.03Y P S S N N T
0.88
= =
ERY g
001 0.54
0.52
5 10 15 20 25 0 H 10 15 20 25
' ROC-AUC Score Threshold & Learning Rate
1 0.001
0098 0.0008
= 08 g
= o096 = 0.0006 &
= = =
o =4 =
2 0ees = 00004 F
0.6 |

e N
5 10 15 20 25 0 5 10 15 20 25

—— Train Loss

Val Loss —— Val Fl-Score =---- Val Balanced Acc === Val ROC-AUC —e— Threshold —— Leamning Rate

Gambar 7.Training History and Metrics Visualization

Dinamika pembelajaran model dapat dijabarkan dalam 3 poin analisis berikut:

1. Loss Convergence and Generalization Capability: Pada grafik Loss & Val Loss, kurva Train Loss (garis biru)
menunjukkan penurunan yang stabil, menandakan model berhasil mempelajari fitur data dengan baik. Sementara itu,
Validation Loss (garis oranye) yang sempat fluktuatif di awal, mulai stabil setelah epoch ke-9. Jarak yang sempit
antara kedua kurva di pertengahan proses menunjukkan kemampuan generalisasi yang optimal. Namun, perlu
dicatat adanya sedikit kenaikan pada Validation Loss setelah epoch 20 (dari 0.0117 menjadi 0.0120), yang menjadi
indikasi awal terjadinya overfitting.

2. Clasification Performance Stability: Dari sisi metrik evaluasi, model terbukti mampu menangani ketidakseimbangan
data secara efektif. Hal ini terlihat dari Balanced Accuracy yang konsisten di atas 0.90 dan ROC-AUC yang stabil di
kisaran 0.99. Selain itu, F1-Score mengalami peningkatan signifikan setelah epoch 7 dan mencapai performa
puncaknya di pertengahan pelatihan, mengonfirmasi bahwa model dapat membedakan kelas fraud dan non-fraud
dengan akurat.

3. Optimization Strategy (Learning Rate and Threshold): Grafik Threshold & Learning Rate memperlihatkan
efektivitas strategi Step Decay. Penurunan Learning Rate pada epoch 9 dan 18 terbukti berhasil menstabilkan
pergerakan Optimal Threshold. Pada tahap akhir, nilai threshold bergerak stabil di rentang 0.44-0.54, menunjukkan
bahwa model secara otomatis menyesuaikan sensitivitasnya untuk mendapatkan F1-Score terbaik.

Mengacu pada dinamika pelatihan tersebut, Epoch 14 dipilih sebagai titik checkpoint terbaik. Pada iterasi ini,
model mencapai performa paling seimbang dengan Validation Loss yang rendah (0.0103) dan F1-Score tertinggi
(0.8622). Pemilihan titik ini dilakukan untuk memaksimalkan akurasi sekaligus menghindari risiko overfitting yang
mulai muncul pada epoch-epoch terakhir.

3.3 Comparative Model Evaluation

Evaluasi ini dilakukan untuk mengukur efektivitas penggunaan data sintetis (CTGAN) dalam meningkatkan performa
model TabTransformer. Sebagai pembanding, model juga diuji terhadap dua skenario kontrol: data asli (Imbalanced)
dan data yang diperbaiki dengan teknik konvensional (SMOTE). Ringkasan perbandingan kinerja ketiga model
disajikan pada Tabel 7.
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Tabel 7.Komparasi Performa Model
Data  Optimal Threshold Precision Recall F1-Score B-Accuracy ROC-AUC

Imbalanced 0.6555 0.9148 0.7852 0.8450 0.8921 0.9981
SMOTE 0.9829 0.9004 0.7870 0.8399 0.8930 0.9981
CTGAN 0.4645 0.8969 0.8139 0.8534 0.9064 0.9984

Untuk melihat perbandingan yang lebih jelas, hasil evaluasi divisualisasikan menggunakan kurva ROC pada

Gambar 8(a) dan diagram batang pada 8(b).
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Gambar 8. Hasil evaluasi: (a) ROC Curve Comparation (b) Evaluation Metrics Comparation

Temuan eksperimental tersebut mengindikasikan pola kinerja yang dapat dijabarkan sebagai berikut:

1.

Limitations of Conventional Oversampling (SMOTE): Pada skenario SMOTE, terlihat adanya anomali Kinerja.
Meskipun teknik ini bertujuan menyeimbangkan data, F1-Score yang dihasilkan (0.8399) justru sedikit lebih rendah
dibandingkan data asli/imbalanced (0.8450). Selain itu, kalibrasi model SMOTE terlihat kurang baik, ditandai
dengan Optimal Threshold yang sangat tinggi (0.9829). Angka ekstrem ini mengindikasikan bahwa model
cenderung "ragu-ragu” akibat adanya noise atau tumpang tindih (overlapping) data di area batas keputusan.
Interpolasi linear yang dilakukan SMOTE cenderung menciptakan sampel sintetis di ruang kosong yang tidak
realistis secara semantik, sehingga mengaburkan decision boundary yang sebenarnya. Akibatnya, model kehilangan
sensitivitasnya dan membutuhkan probabilitas nyaris 100% untuk berani memprediksi fraud, kondisi yang sangat
berisiko dalam sistem keamanan finansial.

Superiority of Generative Approach (CTGAN): Sebaliknya, pendekatan menggunakan CTGAN menunjukkan hasil
yang paling optimal. Model ini unggul pada metrik Recall (0.8139) dan F1-Score (0.8534). Tingginya nilai Recall
ini sangat penting dalam deteksi fraud untuk meminimalkan lolosnya transaksi curang (False Negative). Berbeda
dengan SMOTE, model CTGAN memiliki threshold yang stabil di angka 0.4645 (mendekati 0.5), yang
membuktikan bahwa data sintetis mampu memperjelas batasan antar kelas tanpa merusak distribusi data aslinya.
Keunggulan ini berasal dari kemampuan CTGAN dalam mempelajari manifold data yang kompleks melalui
adversarial training, sehingga sampel yang dihasilkan tetap berada dalam distribusi fitur yang valid namun
menambabh variasi yang diperlukan oleh model untuk belajar.

Operational and Financial Implications: Dari perspektif operasional perbankan, penggunaan model berbasis
CTGAN menawarkan efisiensi yang signifikan. Dengan nilai Recall yang tinggi, bank dapat mengurangi risiko
kerugian finansial akibat chargeback fraud yang tidak terdeteksi. Meskipun threshold yang lebih rendah mungkin
sedikit meningkatkan jumlah False Positive (transaksi sah yang dicurigai), biaya operasional untuk verifikasi
manual melalui SMS atau telepon jauh lebih rendah dibandingkan kerugian reputasi dan finansial akibat fraud yang
lolos. Selain itu, stabilitas model ini menjamin bahwa sistem tidak perlu dikalibrasi ulang terlalu sering, sehingga
mengurangi downtime dan biaya maintenance sistem deteksi fraud dalam jangka panjang.

Temuan ini mengisi celah fundamental dalam literatur dengan mengalihkan fokus dari pendekatan Model-

Centric ke Data-Centric Al. Studi terdahulu seperti Dharmana dkk. (2024) melalui teknik ADASYN hanya mencatatkan

F1-

Score sebesar 81%, sementara arsitektur kompleks Hybrid Autoencoder-Transformer milik Priatna dkk. (2025)

stagnan pada F1-Score 80% dan Recall 74%. Hal ini mengindikasikan bahwa algoritma Deep Learning canggih
sekalipun tidak akan optimal tanpa pengayaan data yang kontekstual.

Berbeda secara signifikan, penelitian ini membuktikan bahwa kualitas fitur lebih krusial daripada kompleksitas

arsitektur. Melalui integrasi Feature Engineering berbasis domain (velocity dan risk scoring) serta dukungan data
sintetis CTGAN, model yang diusulkan berhasil mencapai F1-Score 85,34% dan Recall 81,39%. Peningkatan performa
dibandingkan baseline Priatna dkk. (2025) ini mengonfirmasi secara empiris bahwa strategi pengayaan data adalah
kunci utama dalam melampaui batasan kinerja deteksi anomali finansial.
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3.4 Model Interpretability Analysis (SHAP)

Analisis lanjutan menggunakan metode SHAP (SHapley Additive exPlanations) dilakukan untuk menginterpretasikan
keputusan model TabTransformer yang bersifat black-box. Analisis ini bertujuan untuk memvalidasi apakah fitur-fitur
hasil rekayasa (feature engineering) benar-benar memberikan kontribusi signifikan terhadap deteksi fraud. Visualisasi
global mengenai kontribusi fitur disajikan pada Gambar 10.

SHAP High
category
merchFreq el Bemm =
merchantRisk
custStepDiff
categoryRisk
amtZScoreByCat
distMerchVeloFraud
age

custFreq

Feature value

merchVelocity

gender -

merchStepDiff -
distAmtFraudMed
amount
cohortRisk
distCustveloFraud

custVelocity

—-0.2 0.0 0.2 0.4 0.6
SHAP value (impact on model output)

Gambar 9.SHAP Summary Plot

Interpretasi perilaku model melalui summary plot tersebut dapat dijabarkan dalam 3 poin utama berikut:

1. Dominance of Engineered Features: Visualisasi tersebut mengonfirmasi efektivitas strategi rekayasa fitur dalam
penelitian ini. Terlihat bahwa daftar 10 fitur dengan pengaruh terbesar didominasi oleh fitur turunan (engineered
features), seperti merchantRisk, custStepDiff, dan categoryRisk. Dominasi ini menjadi bukti empiris bahwa variabel
risiko yang diekstraksi melalui proses feature engineering memberikan informasi yang jauh lebih berharga bagi
model dibandingkan sekadar menggunakan data transaksional mentah.

2. Behavioral Patterns and Risk Correlation: Fitur categoryRisk dan merchantRisk memperlihatkan korelasi linear
positif terhadap prediksi. Sebaran titik merah (nilai risiko tinggi) yang terkonsentrasi di sisi kanan (nilai SHAP
positif) menegaskan bahwa semakin tinggi skor risiko historis, semakin besar probabilitas transaksi dideteksi
sebagai fraud. Sebaliknya, pada fitur merchFreq ditemukan pola hubungan terbalik. Titik biru (frekuensi rendah)
yang berada di area positif mengindikasikan bahwa model cenderung mencurigai transaksi yang dilakukan pada
merchant yang jarang atau baru pertama kali dikunjungi oleh nasabah.

3. Statistical Anomalies as Fraud Signals: Kontribusi signifikan juga ditunjukkan oleh fitur statistik amtZScoreByCat.
Pola sebaran data menunjukkan bahwa model sangat sensitif terhadap deviasi nilai transaksi. Transaksi dengan
nominal yang menyimpang jauh dari rata-rata kategori (Z-Score tinggi) secara konsisten mendorong prediksi ke arah
fraud. Hal ini membuktikan bahwa model berhasil menangkap logika deteksi anomali berbasis statistik secara
akurat.

Secara keseluruhan, analisis SHAP ini tidak hanya memvalidasi performa teknis model, tetapi juga menjamin
aspek akuntabilitas sistem. Dalam industri finansial yang terikat regulasi ketat, kkmampuan untuk menjelaskan alasan di
balik pemblokiran transaksi (Explainable Al) adalah syarat mutlak. Fakta bahwa model TabTransformer mendasarkan
keputusannya pada indikator logis—seperti anomali nilai transaksi dan profil risiko—menegaskan bahwa performa
tingginya bukan disebabkan oleh noise, melainkan pemahaman mendalam terhadap pola kejahatan finansial. Dominasi
fitur rekayasa dalam plot ini sekaligus menjawab hipotesis penelitian bahwa kualitas Feature Engineering memegang
peran sentral dalam keberhasilan klasifikasi kejahatan finansial.

Sinergi antara CTGAN, TabTransformer, dan SHAP dalam penelitian ini menawarkan kerangka kerja yang
komprehensif untuk ekosistem keamanan perbankan digital. CTGAN menyelesaikan masalah di sisi hulu (ketersediaan
data), TabTransformer memberikan performa tinggi di sisi pemrosesan (akurasi deteksi), dan SHAP memberikan
validitas di sisi hilir (transparansi keputusan). Temuan ini mengimplikasikan bahwa masa depan deteksi fraud tidak bisa
lagi hanya bergantung pada satu algoritma Klasifikasi semata, melainkan membutuhkan orkestrasi pipeline cerdas yang
menangani siklus hidup data dari sintesis hingga interpretasi.

4. KESIMPULAN

Penelitian ini secara komprehensif menyimpulkan bahwa pergeseran paradigma dari pendekatan Model-Centric menuju
Data-Centric Al merupakan kunci fundamental untuk mengatasi tantangan Klasifikasi fraud pada data dengan
ketimpangan ekstrem. Integrasi strategis antara rekayasa fitur berbasis domain (feature engineering), sintesis data
generatif (CTGAN), dan arsitektur TabTransformer terbukti mampu membentuk model deteksi yang jauh lebih cerdas
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dibandingkan metode konvensional. Berbeda dengan studi terdahulu yang cenderung stagnan akibat ketergantungan
pada interpolasi linear sederhana (SMOTE/ADASYN), pendekatan hibrida ini berhasil mereplikasi distribusi
probabilitas gabungan yang kompleks. Hal ini dibuktikan secara empiris melalui capaian kinerja superior dengan F1-
Score sebesar 85,34% dan Recall 81,39%, yang mengindikasikan bahwa model mampu mengenali pola anomali secara
presisi tanpa mengorbankan sensitivitas. Secara implikasi praktis, temuan ini memberikan kontribusi strategis bagi
ekosistem perbankan digital. Kemampuan model dalam menekan angka False Negative berdampak langsung pada
minimalisasi kerugian finansial akibat transaksi curang yang tidak terdeteksi. Lebih jauh lagi, integrasi metode
interpretasi SHAP menyediakan transparansi keputusan yang akuntabel, sehingga mempermudah proses audit
kepatuhan dan meningkatkan efisiensi operasional tim analis dalam memverifikasi peringatan dini. Namun, penelitian
ini memiliki keterbatasan utama pada penggunaan dataset simulasi yang bersifat statis, sehingga belum sepenuhnya
menangkap fenomena perubahan perilaku serangan yang dinamis (concept drift) yang kerap terjadi di dunia nyata. Oleh
karena itu, penelitian selanjutnya sangat direkomendasikan untuk memvalidasi kerangka kerja ini pada data transaksi
riil berskala besar serta menerapkan mekanisme pembelajaran berkelanjutan (continuous learning) agar sistem
pertahanan tetap adaptif dan relevan dalam menghadapi evolusi modus kejahatan finansial yang terus berkembang.
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