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AbstrakKetimpangan kelas yang sangat ekstrem pada dataset BankSim (1,2% fraud) menjadi hambatan utama dalam membangun 

sistem deteksi yang andal. Penelitian ini mengusulkan integrasi arsitektur Deep Learning TabTransformer dengan teknik 

oversampling generatif Conditional Tabular GAN (CTGAN) untuk mengatasi bias kelas mayoritas. Hasil evaluasi kualitas data 

menunjukkan bahwa CTGAN mampu memproduksi data sintetis dengan skor kualitas keseluruhan mencapai 90,05% dan tingkat 

korelasi pasangan fitur sebesar 91,63%. Temuan eksperimental membuktikan bahwa model usulan memberikan performa yang 

paling superior dengan capaian metrik F1-Score sebesar 85,34%, Recall 81,39%, serta Balanced Accuracy mencapai 90,64%. Hasil 

ini secara signifikan melampaui teknik SMOTE yang mencatatkan F1-Score sebesar 83,99% namun mengalami kegagalan dalam 

kalibrasi probabilitas dengan ambang batas ekstrem sebesar 0,98. Sebaliknya, skenario CTGAN menunjukkan stabilitas ambang 

batas keputusan yang efisien pada nilai 0,46. Validasi melalui analisis SHAP mengonfirmasi bahwa variabel rekayasa fitur seperti 

merchantRisk, custStepDiff, dan amtZScoreByCat memberikan kontribusi paling dominan terhadap prediksi model. Penelitian ini 

menyimpulkan bahwa sinergi paradigma Data-Centric AI melalui pendekatan hibrida generatif mampu mewujudkan model 

klasifikasi yang tangguh, presisi, serta memiliki akuntabilitas tinggi untuk perlindungan sektor perbankan digital. 

Kata Kunci: Deteksi Fraud; TabTransformer; CTGAN; Rekayasa Fitur; SHAP 

AbstractExtreme class imbalance in the BankSim dataset (1.2% fraud) is a major hurdle to building reliable detection systems. This 

study proposes the integration of the TabTransformer architecture with the Conditional Tabular GAN (CTGAN) oversampling 

technique to address majority class bias. Data quality evaluations indicate that CTGAN produces synthetic data with an overall 

quality score of 90.05% and a column pair correlation trend of 91.63%. Experimental findings prove the proposed model delivers 

superior performance, achieving an F1-Score of 85.34%, a Recall of 81.39%, and a Balanced Accuracy of 90.64%. These results 

significantly outperform the SMOTE technique, which recorded an F1-Score of 83.99% but suffered from probability calibration 

failure with an extreme optimal threshold of 0.98. In contrast, the CTGAN scenario demonstrates efficient decision threshold 

stability at 0.46. Validation through SHAP analysis confirms that engineered variables such as merchantRisk, custStepDiff, and 

amtZScoreByCat provide dominant contributions to model predictions. This research concludes that the synergy of the Data-Centric 

AI paradigm facilitates the creation of robust, precise, and highly accountable classification models for digital banking protection 

within financial transaction systems. 
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1. PENDAHULUAN 

Pada era transformasi digital saat ini, lanskap transaksi finansial telah bergeser dari metode konvensional menuju 

ekosistem digital yang serba cepat. Kemudahan ini memungkinkan aktivitas ekonomi dilakukan tanpa batasan waktu, 

sehingga mendorong adopsi sistem pembayaran digital secara masif. Berdasarkan Laporan Kebijakan Moneter Triwulan 

IV 2024 yang dirilis oleh Bank Indonesia (2024), volume transaksi digital sepanjang tahun 2024 mencapai angka 

fenomenal sebesar 34,5 miliar transaksi, dengan indeks pertumbuhan 36,1% dibandingkan tahun sebelumnya. Data ini 

mencerminkan ketergantungan besar masyarakat terhadap infrastruktur teknologi finansial saat ini. Namun, di balik 

efisiensi tersebut, muncul ancaman serius berupa tindak kecurangan transaksi atau fraud yang dapat mengganggu 

stabilitas ekosistem ekonomi. 

Secara fundamental, fraud merupakan manifestasi kecurangan yang dilakukan oleh entitas tertentu melalui 

pencurian identitas, transaksi palsu, dan manipulasi data untuk mengelabui protokol keamanan. Dampak dari tindakan 

ini sangat destruktif, terutama pada kerugian finansial yang harus ditanggung korban maupun lembaga keuangan 

(Priatna dkk., 2025). Fenomena ini sering dipicu oleh kurangnya kewaspadaan pengguna dalam berinteraksi dengan 

teknologi, yang membuka celah bagi modus social engineering dan penyebaran malware (Yuhertiana & Amin, 2024).  

Merujuk pada analisis World Bank Group (2023),  pola fraud terus berevolusi seiring kemajuan teknologi informasi. 

Kondisi ini terkonfirmasi oleh data Otoritas Jasa Keuangan (OJK) yang mencatat 42.257 laporan penipuan hingga 9 

Februari 2025, dengan akumulasi kerugian mencapai Rp700,2 miliar (Putri, 2025).  Skala kerugian ini menegaskan 

bahwa ancaman fraud memerlukan solusi deteksi yang cerdas, adaptif, dan berkelanjutan. 

Sebagai respons, berbagai institusi memanfaatkan teknologi Artificial Intelligence (AI) untuk membangun sistem 

deteksi cerdas yang mampu mengenali pola kecurangan secara otomatis (Odeyemi dkk., 2024). Penelitian terdahulu 

oleh Dharmana dkk. (2024)  serta Bonde dan Bichanga (2025) telah menunjukkan efektivitas model Machine Learning 

hibrida dalam mengidentifikasi anomali transaksi. Meskipun demikian, masih terdapat ruang pengembangan pada aspek 

ketajaman deteksi. Karakteristik data fraud melibatkan interaksi kompleks antara profil demografis (kategorikal) dan 

pola transaksional (numerik). Hal ini menuntut model yang mampu memahami relasi kontekstual tabular secara utuh. 

Studi Padhi dkk. (2021) menunjukkan bahwa arsitektur Transformer memiliki potensi besar dalam memodelkan 
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struktur data tabular yang kompleks melalui mekanisme self-attention. Mekanisme ini memungkinkan model 

menangkap hubungan antar-atribut secara dinamis berdasarkan profil entitas yang terlibat. 

Oleh karena itu, penelitian ini mengusulkan algoritma TabTransformer (Huang dkk., 2020)  untuk klasifikasi 

fraud. Keunggulan utamanya terletak pada penggunaan mekanisme self-attention untuk mengekstraksi hubungan 

kontekstual mendalam antar-fitur kategorikal yang sering terabaikan oleh model konvensional. Efektivitas arsitektur ini 

diperkuat oleh penelitian Conteh dan Zhou (2025)  yang mencatat F1-Score sebesar 99,94% melalui pendekatan Cost-

Sensitive Learning. Namun, tantangan mendasar dalam klasifikasi fraud adalah ketidakseimbangan data (class 

imbalance), di mana sampel kecurangan jauh lebih sedikit dibandingkan transaksi normal (Assabil, 2024).  Fenomena 

ini termanifestasi nyata pada dataset BankSim (Lopez-Rojas & Axelsson, 2014)  yang merepresentasikan distribusi 

ekstrem dunia nyata, dengan transaksi fraud hanya berjumlah 1,2%. Jika tidak ditangani, model cenderung bias 

terhadap kelas mayoritas dan gagal mengenali pola kecurangan secara akurat (Ibrahim & Alfauzan, 2025). 

Guna menanggulangi kendala tersebut, strategi penyeimbangan distribusi kelas melalui oversampling menjadi 

krusial. Dalam berbagai literatur, Synthetic Minority Over-sampling Technique (SMOTE) sering menjadi rujukan 

melalui mekanisme interpolasi linear antar-sampel (Chawla dkk., 2002). Kendati demikian, SMOTE memiliki limitasi 

karena pembentukan data sintetisnya hanya terbatas pada garis lurus antar-titik, yang berpotensi memicu noise dan 

kegagalan dalam merepresentasikan variabilitas data kompleks. Sebagai solusi inovatif, Xu dkk. (2019)  

memperkenalkan Conditional Tabular GAN (CTGAN) berbasis Deep Learning. Keunggulan CTGAN terletak pada 

kapasitasnya mengekstraksi distribusi probabilitas data secara utuh melalui prinsip Generative Adversarial Networks 

(Goodfellow dkk., 2016). Pendekatan ini divalidasi oleh Nugraha dkk. (2022)  dengan performa di atas 90% dibanding 

SMOTE. Temuan ini selaras dengan studi Alshawi (2023) dan Patil (2021) yang menegaskan keunggulan CTGAN 

dalam memodelkan distribusi data rumit untuk klasifikasi. 

Kesenjangan penelitian (research gap) dalam studi ini terletak pada masih jarangnya integrasi antara pendekatan 

generatif modern CTGAN dengan arsitektur berbasis attention seperti TabTransformer pada dataset dengan 

ketimpangan ekstrem. Mayoritas penelitian sebelumnya, seperti Bonde dan Bichanga (2025), masih berfokus pada 

kombinasi SMOTE dengan algoritma ensemble tree seperti Random Forest atau XGBoost. Meskipun efektif, model 

ensemble tree memiliki keterbatasan dalam menangkap hubungan semantik fitur kategorikal dibandingkan mekanisme 

attention. Secara spesifik, urgensi penerapan strategi hibrida ini didorong oleh kompleksitas topologi data fraud yang 

sering kali menempati ruang manifold non-linear yang sulit dijangkau oleh interpolasi sederhana. Dalam konteks ini, 

CTGAN bertindak lebih dari sekadar penambah jumlah sampel, ia merekonstruksi korelasi antar-variabel yang valid 

secara statistik, sehingga mencegah distorsi informasi yang kerap terjadi pada metode klasik. Data sintetis berkualitas 

tinggi tersebut kemudian dioptimalkan oleh mekanisme Contextual Embeddings pada TabTransformer, yang mampu 

mengubah fitur kategorikal berdimensi tinggi menjadi representasi vektor yang padat dan bermakna. Sinergi antara 

fidelitas data dari generator dan kapasitas representasi dari model berbasis attention ini dihipotesiskan mampu 

memecahkan masalah vanishing gradient pada data minoritas yang sering dialami oleh Deep Learning standar. 

Kontribusi ilmiah penelitian ini adalah menghadirkan pendekatan hibrida Deep Generative dan Self-Attention untuk 

mengisi celah tersebut. Pendekatan ini diharapkan menghasilkan model deteksi yang lebih robust dan akurat dalam 

mengenali pola kecurangan di tengah kondisi data yang tidak seimbang, sekaligus menekan risiko False Negative yang 

menjadi parameter paling kritis dalam mitigasi kerugian finansial perbankan. Selain itu, validasi melalui pendekatan 

Explainable AI (XAI) (Lundberg & Lee, 2017) turut diintegrasikan guna menjamin bahwa peningkatan performa 

tersebut tetap mematuhi prinsip transparansi algoritma yang diwajibkan dalam regulasi industri keuangan, menjadikan 

usulan ini sebagai solusi yang komprehensif baik dari sisi akurasi teknis maupun akuntabilitas operasional. 

2. METODOLOGI PENELITIAN 

Penelitian eksperimental ini mengklasifikasi fraud melalui tahapan sistematis yang meliputi data collection, pre-

processing, splitting, feature engineering, oversampling, training model, hingga model evaluation & interpretation 

(SHAP), sebagaimana diilustrasikan pada Gambar 1. 

 

Gambar 1. Diagram Alir Penelitian 

Pemilihan algoritma TabTransformer didasarkan pada kemampuannya dalam menangkap hubungan kontekstual 

pada data tabular yang sering kali terabaikan oleh model tree-based konvensional maupun Deep Learning standar 

(MLP). Sementara itu, CTGAN dipilih karena keunggulannya dibandingkan dengan SMOTE dalam memodelkan 

https://www.kaggle.com/datasets/ealaxi/banksim1https:/www.kaggle.com/datasets/ealaxi/banksim1
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distribusi probabilitas yang kompleks. Penelitian ini menghipotesiskan bahwa integrasi pendekatan generatif (CTGAN) 

dengan arsitektur berbasis atensi (TabTransformer) akan menghasilkan model deteksi fraud yang tidak hanya memiliki 

sensitivitas tinggi (Recall) terhadap kelas minoritas, tetapi juga menjaga presisi (Precision) dengan menekan angka 

false positive dibandingkan metode interpolasi tradisional. 

2.1 Data Collection 

Penelitian kali ini menggunakan dataset BankSim (Lopez-Rojas & Axelsson, 2014), yang terdiri dari 594.643 log 

transaksi hasil simulasi bank di Spanyol. Penggunaan data sintetis ini dipilih sebagai alternatif standar mengingat 

batasan privasi ketat pada data finansial riil. Dataset ini memuat 9 fitur (7 kategorikal dan 2 numerik) dengan spesifikasi 

lengkap yang dirangkum pada Tabel 1. 

Tabel 1. Spesifikasi Variabel pada Dataset 

Fitur Tipe Data Jumlah Unik Keterangan 

step int64 180 Langkah Waktu Simulasi 

customer object 4.112 ID Customer 

age object 8 Kategori Usia 

gender object 4 Jenis Kelamin 

zipCodeOri object 1 Kode Pos Customer 

merchant object 50 ID Merchant 

zipMerchant object 1 Kode Pos Merchant 

category object 15 Kategori Merchant 

amount float64 23.767 Nominal Uang 

fraud int64 2 Target 

Tantangan utama dari dataset ini adalah ketidakseimbangan kelas (imbalanced data) yang ekstrem, di mana 

proporsi fraud hanya sebesar 1,2% dibandingkan 98,8% transaksi normal. Untuk visualisasi kelas tersebut disajikan 

pada Gambar 2. 

 

Gambar 2. Distribusi Kelas Target Pada Fitur Fraud 

Berdasarkan visualisasi distribusi tersebut, terlihat jelas dominasi absolut kelas mayoritas. Ketimpangan ekstrem 

ini mengindikasikan bahwa tanpa penanganan khusus, model akan memiliki bias yang kuat terhadap transaksi normal 

dan berpotensi gagal mengenali pola fraud. 

2.2 Pre-processing & Initial Features 

Sebagai referensi kondisi awal, visualisasi sampel data mentah (raw data) sebelum pemrosesan disajikan pada Gambar 

3. 

 

Gambar 3. Sampel Raw Data BankSim 

https://www.kaggle.com/datasets/ealaxi/banksim1
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Berdasarkan analisis statistik pada data tersebut, proses pembersihan dilakukan dengan membuang fitur 

zipCodeOri dan zipCodeMerchant yang memiliki variansi nol (cardinality = 1), diikuti standarisasi format fitur 

kategorikal. Selanjutnya, fitur temporal custStepDiff dan merchStepDiff diinisialisasi guna menangkap dinamika jeda 

waktu antar transaksi. Nilai ini dihitung sebagai selisih step saat ini dengan step sebelumnya untuk entitas yang sama, 

mengacu pada Persamaan (1). 

        (   )-    (   - )        (1) 

Operasi ini secara alami menghasilkan nilai kosong (NaN) pada transaksi pertama entitas karena ketiadaan 

referensi waktu sebelumnya, sebagaimana diilustrasikan pada Tabel 2. Nilai NaN ini sengaja dipertahankan sementara 

dan baru ditangani melalui imputasi pasca-splitting untuk mencegah kebocoran data (data leakage). 

Tabel 2. Representasi Data Pasca-Inisialisasi Fitur Waktu 

step customer custStepDiff merchant merchStepDiff 

0 C1093826151 NaN M348934600 NaN 

0 C352968107 NaN M348934600 0.0 

0 C2054744914 NaN M1823072687 NaN 

0 C1760612790 NaN M348934600 0.0 

0 C757503768 NaN M348934600 0.0 

2.3 Splitting Data 

Setelah melalui tahap pre-processing, splitting data dilakukan dalam dua tahap menggunakan teknik stratified shuffle 

split untuk menghasilkan subset train data, val data, dan test data dengan rasio 70:15:15. Penggunaan teknik ini 

menjamin bahwa setiap data merepresentasikan distribusi kelas asli, terutama kelas fraud yang bersifat minoritas. 

Rincian mengenai proporsi jumlah data untuk setiap subset, baik kelas non-fraud maupun fraud, dipaparkan secara 

terperinci pada Tabel 3. 

Tabel 3. Proporsi Kelas Target pada Setiap Subset Data 

Data Jumlah Data Jumlah Fraud Rasio Persentase Fraud 

Train 416.250 5.040 1.21% 

Val 89.197 1.080 1.21% 

Test 89.196 1.080 1.21% 

Hasil pembagian tersebut mengonfirmasi bahwa teknik stratified shuffle split berhasil mempertahankan 

konsistensi rasio fraud sebesar 1,21% di seluruh subset. Konsistensi ini krusial untuk menjamin validitas evaluasi 

model agar tidak bias akibat pergeseran distribusi data. 

2.4 Feature Engineering 

Pada tahapan ini, data latih (training set) digunakan untuk merekayasa fitur guna mendapatkan representasi yang lebih 

mendalam dari data mentah. Parameter hasil perhitungan dari data latih kemudian diterapkan pada data validasi dan 

data uji. Pendekatan ini diterapkan secara ketat untuk mencegah kebocoran data (data leakage) yang dapat 

menyebabkan bias pada evaluasi model. Proses ini menghasilkan 13 fitur baru yang dikelompokkan sebagai berikut: 

2.5 Temporal Imputation 

Pada tahapan sebelumnya, teridentifikasi bahwa fitur custStepDiff dan merchStepDiff memiliki nilai kosong (NaN) pada 

setiap transaksi pertama. Oleh karena itu, penanganan dilakukan dengan teknik imputasi menggunakan nilai median 

global dari data latih (training set). Strategi imputasi median dipilih karena lebih resisten terhadap pencilan (outliers) 

dibandingkan rata-rata (mean). Hal ini dikonfirmasi oleh statistik data latih yang menunjukkan skewness signifikan pada 

fitur selisih waktu (custStepDiff Mean: 1.21 vs Median: 1.00; merchStepDiff Mean: 0.01 vs Median: 0.00). Penggunaan 

median (1.00 dan 0.00) memastikan validitas data tetap terjaga tanpa distorsi nilai ekstrem. 

2.5.1 Frequency Encoding 

Pada tahapan ini, frekuensi kemunculan entitas (customer dan merchant) pada data latih dihitung dan dipetakan menjadi 

fitur custFreq dan merchFreq. Untuk menangani data baru (unseen data) yang tidak memiliki riwayat, diterapkan 

mekanisme imputasi menggunakan nilai median global guna menghindari bias akibat distribusi long-tail, sebagaimana 

diformulasikan pada Persamaan (2). 

    ( ) {
     (        ) jik          
      (      ) jik          

      (2) 

Pemilihan median dinilai lebih robust dibandingkan rata-rata (mean) karena teridentifikasi adanya kesenjangan 

ekstrem pada distribusi merchant (Mean: 8.325 vs Median: 416). Disparitas ini menunjukkan bahwa rata-rata terdistorsi 
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oleh segelintir merchant besar, sehingga penggunaan median memberikan estimasi yang lebih stabil untuk entitas yang 

belum dikenali. 

2.5.2 Velocity 

Pada tahapan ini, fitur custVelocity dan merchVelocity dikonstruksi untuk menangkap pola kecepatan pengurasan dana. 

Nilai ini dihitung sebagai rasio nominal terhadap jeda waktu (   ), dengan penambahan konstanta 1 pada penyebut 

guna mencegah pembagian dengan nol, sebagaimana Persamaan (3). 

            
       

     
        (3) 

Analisis distribusi menunjukkan bahwa median velocity transaksi fraud jauh melampaui transaksi normal 

(Customer: 139,10 vs 12,85; Merchant: 285,26 vs 26,46). Berdasarkan disparitas ini, fitur distCustVeloFraud dan 

distMerchVeloFraud dibuat untuk mengukur jarak absolut velocity saat ini terhadap profil median fraud, mengikuti 

Persamaan (4). 

        |           - ~     |       (4) 

2.5.3 ZScore & Distance 

Pada tahapan ini, fitur amtZScoreByCat dikonstruksi menggunakan teknik Z-Score per kategori (category-wise 

standardization) untuk mengukur tingkat ekstremitas penyimpangan nominal transaksi dari rata-rata kategori 

belanjanya. Konstanta     -  ditambahkan pada penyebut guna menjamin stabilitas numerik, sebagaimana 

diformulasikan pada Persamaan (5). 

   
       -    

      
         (5) 

Selanjutnya, berdasarkan temuan bahwa median transaksi fraud jauh lebih tinggi dibandingkan normal (317,92 

vs 26,58), dibuat fitur distAmtFraudMed. Fitur ini mengukur jarak absolut antara nominal transaksi saat ini dengan 

profil median fraud untuk menangkap anomali nilai tinggi, mengikuti Persamaan (6). 

      |       - ~     |        (6) 

2.5.4 Risk Scoring 

Pada tahapan ini, variabel kategorikal (merchant, category, dan cohort) dikonversi menjadi skor risiko numerik 

(merchantRisk, categoryRisk, cohortRisk) menggunakan teknik Target Encoding. Pendekatan ini menghitung 

probabilitas terjadinya fraud (rata-rata target) untuk setiap entitas. Guna memitigasi overfitting pada kategori dengan 

frekuensi rendah (rare labels), diterapkan mekanisme smoothing dengan parameter     . Teknik ini menyeimbangkan 

statistik lokal kategori dengan rata-rata global untuk meredam noise, sebagaimana diformulasikan pada Persamaan (7). 

   ( ) 
(        ) (         )

   
       (7) 

Dalam formulasi tersebut,   merepresentasikan jumlah transaksi pada kategori terkait, sedangkan        dan 

        masing-masing menyatakan rata-rata target (probabilitas fraud) pada tingkat kategori dan keseluruhan data. 

Mekanisme ini juga menjamin stabilitas model terhadap data baru (unseen data), di mana kategori yang tidak dikenali 

otomatis diisi dengan nilai global. 

2.6 Oversampling 

Setelah melalui proses feature engineering, dilakukan tahapan oversampling data untuk menangani ketidakseimbangan 

data, dimana pada penelitian ini diterapkan metode oversampling menggunakan algoritma CTGAN (Conditional 

Tabular GAN). Proses ini tidak sekadar menduplikasi data, melainkan mensintesis data baru berdasarkan distribusi 

probabilitas bersyarat dari kelas minoritas (fraud). 

Mekanisme pembentukan data sintetis diawali dengan menghitung probabilitas setiap baris (row) berdasarkan 

kondisi kolom kategorikal tertentu  (   ). Dalam penelitian ini, kondisi dikunci pada label fraud, di mana 

probabilitasnya dihitung mengikuti persamaan yang diformulasikan pada Persamaan (8). 

 (   ) ∑   (          ) (     )   
  

      (8) 

Berdasarkan probabilitas tersebut, generator kemudian melakukan pengambilan sampel (sampling) secara 

spesifik pada kategori target (  ) untuk menghasilkan data sintetis ( ̂)  yang memiliki karakteristik fraud. Proses 

sampling ini diformulasikan dalam Persamaan (9).  

 ̂    (          )        (9) 
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Tahap pelatihan sistem ini melibatkan optimasi melalui skema persaingan min-max antara generator   dan 

discriminator  . Dalam mekanisme tersebut, generator dipacu untuk memproduksi data yang mampu meminimalkan 

akurasi deteksi discriminator, sementara discriminator dilatih secara intensif guna memaksimalkan kemampuannya 

dalam menolak setiap sampel sintetis. Adapun formulasi dari fungsi objektif yang mendasari proses optimisasi tersebut 

dijabarkan secara matematis melalui Persamaan (10). 

   
 
   
 
 (   )         [    ( )]      *   ( - ( ( )))+   (10) 

Tahapan implementasi diawali dengan penyusunan skema metadata guna memisahkan antara atribut kategorikal 

dan numerik, yang dilanjutkan dengan proses pelatihan model selama 1.000 epoch. Rincian konfigurasi hyperparameter 

yang diterapkan dirangkum pada Tabel 4. 

Tabel 4.Konfigurasi Hyperparameter CTGAN 

Parameter Nilai Keterangan 

Epochs 1.000 Jumlah iterasi pelatihan penuh 

Batch Size 500 Jumlah sampel per update gradien 

PAC 10 Jumlah sampel per paket diskriminator 

Embedding Dim 128 Dimensi representasi fitur diskrit 

Generator Dim (256, 256) Dimensi hidden layer generator 

Discriminator Dim (256, 256) Dimensi hidden layer diskriminator 

Learning Rate 
 

Laju pembelajaran (G dan D) 

Penerapan parameter tersebut, khususnya jumlah epoch yang tinggi (1.000) dan dimensi embedding (128), 

ditujukan untuk memastikan generator memiliki kapasitas yang memadai dalam mempelajari distribusi data yang 

kompleks, sekaligus menjaga stabilitas gradien selama proses sintesis berlangsung. 

2.7 Training Model 

Pada tahapan ini, dilakukan pelatihan model klasifikasi menggunakan algoritma TabTransformer (Huang dkk., 2020). 

Berbeda dengan MLP standar yang memperlakukan semua fitur secara independen, arsitektur ini dipilih karena 

keunggulannya dalam memodelkan interaksi antar fitur kategorikal secara mendalam melalui mekanisme attention. 

Secara operasional, fitur kategorikal ditransformasi menjadi dense vectors melalui lapisan embedding, sedangkan fitur 

numerikal distandarisasi menggunakan Layer Normalization. 

Inti kekuatan model ini terletak pada mekanisme Multi-Head Self-Attention di jalur kategorikal yang bertugas 

menangkap ketergantungan kontekstual antar fitur. Mekanisme ini menghitung bobot secara dinamis mengikuti 

formulasi persamaan (11). 

         (     )        (
   

√  
)       (11) 

Output dari lapisan transformer kemudian digabungkan (concatenated) dengan fitur numerikal untuk 

menghasilkan prediksi akhir melalui lapisan Multi-Layer Perceptron (MLP), sebagaimana diilustrasikan pada Gambar 

4. 

 

Gambar 4.Representasi Struktural Model TabTransformer 
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Skema arsitektur tersebut memperlihatkan mekanisme pemrosesan hibrida, di mana fitur kategorikal 

mendapatkan perhatian khusus melalui self-attention untuk menangkap konteks semantik, sebelum disatukan dengan 

fitur numerik untuk klasifikasi akhir. 

Adapun Proses pelatihan dijalankan menggunakan fungsi kerugian Binary Cross Entropy with Logits dan 

dioptimasi menggunakan algoritma AdamW dengan mekanisme learning rate scheduler (ReduceLROnPlateau). Guna 

memaksimalkan performa pada kelas minoritas, ambang batas keputusan (threshold) dievaluasi secara dinamis 

berdasarkan F1-Score terbaik pada data validasi. Rincian konfigurasi hyperparameter yang digunakan dirangkum 

dalam Tabel 5. 

Tabel 5.Konfigurasi Hyperparameter Algoritma TabTransformer 

Parameter Nilai Keterangan 

Embedding Dim 32 Dimensi vektor fitur kategorikal 

Transformer Depth 6 Jumlah lapisan encoder transformer 

Attention Heads 8 Jumlah head pada mekanisme atensi 

Attention Dropout 0.1 Probabilitas dropout pada lapisan atensi 

FF Dropout 0.1 Probabilitas dropout pada feed-forward 

MLP Hidden Layers -128,64 Dimensi lapisan tersembunyi (hasil mults 4 & 2) 

MLP Activation ReLU Fungsi aktivasi pada lapisan MLP 

Output Dim 1 Dimensi output (Klasifikasi Biner) 

Batch Size 128 Ukuran sampel per iterasi 

Learning Rate 
 

Laju pembelajaran awal (AdamW) 

Weight Decay 
 

Regularisasi bobot optimizer 

Epochs 25 Total durasi pelatihan 

Loss Function BCEWithLogitsLoss Fungsi kerugian entropi biner 

LR Scheduler ReduceLROnPlateau Penyesuaian learning rate berdasarkan performa validasi 

Kombinasi parameter tersebut, khususnya penggunaan weight decay dan dropout, digunakan secara spesifik 

untuk mencegah overfitting, sementara scheduler adaptif memastikan konvergensi model yang stabil pada loss surface 

yang kompleks. 

2.8 Model Evaluation & Interpretation (SHAP) 

Evaluasi metode dilakukan secara komprehensif mencakup kinerja prediktif dan interpretabilitas model menggunakan 

SHapley Additive exPlanations (SHAP). Pendekatan ganda ini diterapkan untuk memastikan model TabTransformer 

tidak hanya unggul secara statistik, tetapi juga memenuhi standar akuntabilitas perbankan. 

2.8.1 Comparative Experimental Scenarios 

Untuk mengukur dampak pendekatan oversampling secara objektif, penelitian ini merancang tiga skenario eksperimen. 

Seluruh skenario divalidasi menggunakan data uji (test set) asli yang tidak dimodifikasi untuk mencegah bias evaluasi. 

1. Baseline Scenario (Imbalanced Data): Model dilatih menggunakan data asli tanpa modifikasi distribusi sebagai 

kontrol batas bawah (lower bound) untuk mengukur kegagalan deteksi pada kondisi ketimpangan ekstrem. 

2. Comparative Scenario (SMOTE): Model dilatih menggunakan data yang diseimbangkan dengan teknik SMOTE 

sebagai pembanding standar industri. 

3. Proposed Scenario (CTGAN): Model dilatih menggunakan data campuran sintetis CTGAN untuk menguji hipotesis 

bahwa model generatif mampu menangkap distribusi probabilitas gabungan (joint distribution) lebih baik 

dibandingkan interpolasi linear. 

Perlu ditekankan bahwa seluruh skenario di atas diuji menggunakan data uji (test set) yang tidak dimodifikasi 

oleh teknik oversampling. Langkah ini diterapkan secara ketat untuk mencegah bias evaluasi, memastikan model diuji 

pada kondisi distribusi alami (real-world distribution) dimana proporsi fraud tetap minoritas. 

2.8.2 Threshold Optimization & Evaluation Metrics 

Tahap evaluasi diawali dengan memulihkan bobot model paling optimal (best checkpoint) hasil fase validasi guna 

mengantisipasi efek overfitting pasca pelatihan. Dalam menentukan klasifikasi akhir, penggunaan ambang batas standar 

sebesar 0,5 dipandang kurang efektif untuk menangani data dengan ketimpangan kelas yang ekstrem. Sebagai 

solusinya, diterapkan mekanisme Threshold Tuning guna mengidentifikasi titik batas probabilitas yang paling dinamis. 

Pendekatan ini berfokus pada maksimisasi metrik F1-Score, yang secara esensial menyatukan nilai precision dan recall 

ke dalam satu keseimbangan numerik. Melalui strategi ini, sistem mampu menekan risiko transaksi kecurangan yang 

tidak terdeteksi (False Negative) dengan tetap menjaga stabilitas alarm palsu. Klasifikasi akhir kemudian ditentukan 

berdasarkan apakah probabilitas sampel melampaui ambang batas optimal yang telah ditetapkan tersebut. 

Sebagai konsekuensi dari pendekatan ini, akurasi global tidak dijadikan acuan utama. Evaluasi difokuskan pada 

metrik yang sensitif terhadap kelas minoritas, yaitu Precision, Recall, F1-Score, dan Balanced Accuracy, serta analisis 
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kurva ROC (Receiver Operating Characteristic) untuk mengukur kemampuan diskriminatif model secara menyeluruh. 

Formulasi metrik evaluasi dapat dilihat pada persamaan (12), (13), (14), (15), dan (16). 

  

     
          (12) 

  

     
          (13) 

  
                

                
        (14) 

                       

 
        (15) 

∫    (f  ) (f  )
 

 
        (16) 

2.8.3 Shapley Additive exPlanations (SHAP) 

Meskipun model Deep Learning seperti TabTransformer memiliki kinerja tinggi, arsitekturnya yang kompleks sering 

dikategorikan sebagai "kotak hitam" (black-box). Untuk mengatasi kendala interpretabilitas ini, diterapkan metode 

SHapley Additive exPlanations (SHAP) sebagaimana diperkenalkan oleh Lundberg dan Lee (2017). Metode ini 

mengadopsi teori permainan kooperatif (game theory) untuk menghitung kontribusi marginal setiap fitur terhadap hasil 

prediksi akhir. 

Dalam penelitian ini, analisis SHAP memiliki peran ganda, sebagai alat interpretasi keputusan model dan 

sebagai metode validasi fitur. Analisis dilakukan dalam dua tingkatan. 

1. Feature Importance: Analisis ini digunakan untuk mengidentifikasi hierarki fitur yang paling dominan dalam 

mendeteksi pola fraud secara keseluruhan. Fitur dengan nilai rata-rata SHAP absolut tertinggi dianggap memiliki 

pengaruh terbesar. Secara khusus, analisis ini bertujuan untuk memvalidasi efektivitas tahapan Feature Engineering. 

Jika fitur-fitur turunan (seperti velocity, risk scores, dan z-score) menduduki peringkat atas dalam summary plot, hal 

tersebut menjadi bukti empiris bahwa rekayasa fitur berhasil mengekstraksi informasi krusial yang tidak dapat 

ditangkap oleh fitur mentah (raw features). 

2. Instance-level Explanation: Analisis ini digunakan untuk membedah alasan keputusan model pada level transaksi 

individu. Pendekatan ini memungkinkan analisis why (mengapa) sebuah transaksi spesifik ditandai sebagai fraud, 

dengan memvisualisasikan bagaimana kombinasi nilai fitur tertentu mendorong probabilitas prediksi ke arah positif 

atau negatif. 

Penerapan SHAP ini memastikan bahwa model mempelajari pola logis yang sesuai dengan karakteristik domain 

finansial, serta membuktikan bahwa peningkatan kinerja model didorong oleh kualitas fitur yang dikonstruksi, bukan 

sekadar menghafal noise pada data latih. 

3. HASIL DAN PEMBAHASAN 

3.1 Synthetic Data Quality Analysis (CTGAN) 

Evaluasi kualitas data sintetis dilakukan menggunakan kerangka kerja Synthetic Data Vault (SDV) untuk menjamin 

kemiripan karakteristik statistik antara data hasil generasi dan data asli. Ringkasan hasil evaluasi tersebut disajikan pada  

Tabel 6. 

Tabel 6. Skor Evaluasi Kualitas Data 

Metrik Evaluasi Skor Keterangan 

Data Validity 100% Kepatuhan data terhadap batasan nilai (min/max) dan tipe data. 

Data Structure 100% Integritas struktur tabel dan kelengkapan kolom. 

Column Shapes 89,46% Kemiripan distribusi marginal per fitur (univariate distribution). 

Columns Pair Trends 91,63% Kemiripan pola korelasi antar pasangan fitur (bivariate correlation). 

Overall Quality Score 90,05% Rata-rata kualitas data sintetis secara menyeluruh. 

Evaluasi metrik menunjukkan kinerja model yang optimal dengan overall score mencapai 90,05%. Skor 

sempurna tercatat pada validity dan structure data, yang mampu menjamin integritas tipe data dan konsistensi skema 

tabel. Secara spesifik, model berhasil mereplikasi fitur target fraud dengan skor 1.0, serta menangkap pola fitur yang 

kompleks dari hasil rekayasa seperti custStepDiff  dan distMerchVeloFraud dengan skor tinggi berkisar 96-97%. 

Meskipun terdapat sedikit variasi pada ekor distribusi fitur merchantRisk dengan skor 82%, dalam hal ini pola korelasi 

antar variabel tetap terjaga dengan baik ditunjukkan pada skor pair trends sebesar 91,63%. Secara khusus, skor Column 

Shapes sebesar 89,46%—meskipun merupakan metrik terendah dalam evaluasi ini—masih berada jauh di atas ambang 

batas toleransi reliabilitas data sintetis. Penurunan minor pada metrik ini merupakan konsekuensi alami dari 

kompleksitas distribusi long-tail pada data keuangan, di mana model generatif harus bekerja ekstra keras untuk 

menyeimbangkan antara mereplikasi frekuensi transaksi nominal kecil yang dominan dengan transaksi nominal besar 
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yang sangat jarang. Namun, fakta bahwa skor ini tetap mendekati 90% menegaskan bahwa CTGAN mampu menangani 

tantangan statistical skewness jauh lebih baik dibandingkan metode interpolasi tradisional. 

Validitas skor kualitas data di atas tidak terlepas dari stabilitas proses pelatihan model generatif itu sendiri. 

Untuk memastikan bahwa CTGAN tidak mengalami kegagalan pelatihan (mode collapse) atau divergensi, dinamika 

pembelajaran dipantau melalui pergerakan fungsi kerugian (loss function). Visualisasi riwayat pelatihan Generator dan 

Discriminator selama 1.000 epoch dapat dilihat pada Gambar 5. 

 

Gambar 5. Training History CTGAN 

Dinamika pembelajaran yang tervisualisasi memperlihatkan kompetisi (min-max game) yang sehat antara 

Generator (garis kuning) dan Discriminator (garis tosca). Pada fase awal (0-200 epoch), terjadi fluktuasi tajam yang 

menandakan fase eksplorasi ruang vektor, di mana Discriminator masih dengan mudah membedakan data palsu 

(ditandai dengan loss yang rendah pada garis tosca). Namun, memasuki pertengahan hingga akhir pelatihan, kedua 

kurva mulai mencapai titik keseimbangan (equilibrium). Pola osilasi yang stabil dan saling berhimpit di sekitar titik nol 

pada 400 epoch terakhir mengindikasikan bahwa model telah mencapai konvergensi optimal. Hal ini berarti Generator 

berhasil memproduksi data sintetis yang cukup realistis sehingga menyulitkan Discriminator untuk membedakannya 

dari data asli. 

Untuk memvalidasi statistik tersebut, diperlukan visualisasi grafik yang menampilkan estimasi densitas kernel 

(Kernel Density Estimation/KDE) yang digunakan pada 3 fitur representatif guna memverifikasi apakah model mampu 

menangkap bentuk distribusi data yang variasi. Adapun visualisasinya dapat dilihat pada Gambar 6. 

 

Gambar 6. Perbandingan Distribusi Fitur Amount, Velocity, dan Merchant Risk (Data Riil vs Sintetis) 

Visualisasi tersebut memperlihatkan keselarasan topologi yang signifikan antara data sintetis (CTGAN) dan data 

asli. Kurva densitas (density curve) menunjukkan kemampuan adaptasi model yang presisi dalam mereplikasi berbagai 

bentuk distribusi. Adapun analisis mendalam terhadap karakteristik distribusi pada ketiga fitur representatif tersebut 

dipaparkan dalam rincian di bawah ini. 

1. Distribution Of Amount: Fitur ini memiliki karakteristik distribusi yang sangat condong (highly skewed). Model 

terbukti berhasil menangkap pola global ini, di mana densitas tertinggi terkonsentrasi pada nilai rendah dan 

melandai secara gradual ke arah nominal besar membentuk ekor panjang (long-tail). Konsistensi ini membuktikan 

bahwa model mampu mereplikasi karakteristik nominal transaksi yang wajar sekaligus mempertahankan 

probabilitas kemunculan nilai transaksi besar yang jarang terjadi (rare events). 

2. Distribution Of Velocity: Pada fitur ini, terlihat adanya superposisi (himpitan) kurva yang hampir sempurna antara 

data sintetis dan data asli. Fenomena visual ini mengonfirmasi validitas skor statistik Column Shapes yang tinggi 

(97%) pada evaluasi sebelumnya. Hal ini mengindikasikan bahwa model tidak hanya mempelajari data mentah, 

tetapi juga mampu menangkap pola fitur turunan yang kompleks dengan akurasi tinggi tanpa distorsi yang berarti. 
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3. Distribution Of Merchant Risk: Fitur ini merepresentasikan pola distribusi multimodal (banyak puncak). Secara 

visual, model berhasil mengidentifikasi lokasi klaster risiko utama, yang ditandai dengan puncak densitas pada 

rentang nilai 0,4; 0,5; dan 0,8. Meskipun kurva sintetis cenderung memiliki amplitudo yang lebih tajam (over-

sharpening) dibandingkan data asli, struktur utama distribusi tetap terjaga. Hal ini menjamin bahwa informasi 

krusial mengenai kategori merchant berisiko tinggi tidak hilang selama proses sintesis. 

Secara keseluruhan, analisis visual ini membuktikan bahwa data sintetis yang dihasilkan oleh CTGAN tidak 

sekadar melakukan memorisasi (menyalin data), melainkan berhasil mempelajari struktur probabilitas (probability 

structure) dari data latih secara mendalam. 

3.2 Model Training Analysis 

Kinerja pelatihan model TabTransformer dianalisis selama 25 epoch untuk memantau stabilitas metrik dan memastikan 

model mampu melakukan generalisasi dengan baik pada data validasi. Visualisasi lengkap mengenai dinamika 

pelatihan ini dapat dilihat pada Gambar 7. 

 

Gambar 7.Training History and Metrics Visualization 

Dinamika pembelajaran model dapat dijabarkan dalam 3 poin analisis berikut: 

1. Loss Convergence and Generalization Capability: Pada grafik Loss & Val Loss, kurva Train Loss (garis biru) 

menunjukkan penurunan yang stabil, menandakan model berhasil mempelajari fitur data dengan baik. Sementara itu, 

Validation Loss (garis oranye) yang sempat fluktuatif di awal, mulai stabil setelah epoch ke-9. Jarak yang sempit 

antara kedua kurva di pertengahan proses menunjukkan kemampuan generalisasi yang optimal. Namun, perlu 

dicatat adanya sedikit kenaikan pada Validation Loss setelah epoch 20 (dari 0.0117 menjadi 0.0120), yang menjadi 

indikasi awal terjadinya overfitting. 

2. Clasification Performance Stability: Dari sisi metrik evaluasi, model terbukti mampu menangani ketidakseimbangan 

data secara efektif. Hal ini terlihat dari Balanced Accuracy yang konsisten di atas 0.90 dan ROC-AUC yang stabil di 

kisaran 0.99. Selain itu, F1-Score mengalami peningkatan signifikan setelah epoch 7 dan mencapai performa 

puncaknya di pertengahan pelatihan, mengonfirmasi bahwa model dapat membedakan kelas fraud dan non-fraud 

dengan akurat. 

3. Optimization Strategy (Learning Rate and Threshold): Grafik Threshold & Learning Rate memperlihatkan 

efektivitas strategi Step Decay. Penurunan Learning Rate pada epoch 9 dan 18 terbukti berhasil menstabilkan 

pergerakan Optimal Threshold. Pada tahap akhir, nilai threshold bergerak stabil di rentang 0.44–0.54, menunjukkan 

bahwa model secara otomatis menyesuaikan sensitivitasnya untuk mendapatkan F1-Score terbaik. 

Mengacu pada dinamika pelatihan tersebut, Epoch 14 dipilih sebagai titik checkpoint terbaik. Pada iterasi ini, 

model mencapai performa paling seimbang dengan Validation Loss yang rendah (0.0103) dan F1-Score tertinggi 

(0.8622). Pemilihan titik ini dilakukan untuk memaksimalkan akurasi sekaligus menghindari risiko overfitting yang 

mulai muncul pada epoch-epoch terakhir. 

3.3 Comparative Model Evaluation 

Evaluasi ini dilakukan untuk mengukur efektivitas penggunaan data sintetis (CTGAN) dalam meningkatkan performa 

model TabTransformer. Sebagai pembanding, model juga diuji terhadap dua skenario kontrol: data asli (Imbalanced) 

dan data yang diperbaiki dengan teknik konvensional (SMOTE). Ringkasan perbandingan kinerja ketiga model 

disajikan pada Tabel 7. 
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Tabel 7.Komparasi Performa Model 

Data Optimal Threshold Precision Recall F1-Score B-Accuracy ROC-AUC 

Imbalanced 0.6555 0.9148 0.7852 0.8450 0.8921 0.9981 

SMOTE 0.9829 0.9004 0.7870 0.8399 0.8930 0.9981 

CTGAN 0.4645 0.8969 0.8139 0.8534 0.9064 0.9984 

Untuk melihat perbandingan yang lebih jelas, hasil evaluasi divisualisasikan menggunakan kurva ROC pada 

Gambar 8(a) dan diagram batang pada 8(b). 

  

(a)      (b) 

Gambar 8. Hasil evaluasi: (a) ROC Curve Comparation (b) Evaluation Metrics Comparation 

Temuan eksperimental tersebut mengindikasikan pola kinerja yang dapat dijabarkan sebagai berikut: 

1. Limitations of Conventional Oversampling (SMOTE): Pada skenario SMOTE, terlihat adanya anomali kinerja. 

Meskipun teknik ini bertujuan menyeimbangkan data, F1-Score yang dihasilkan (0.8399) justru sedikit lebih rendah 

dibandingkan data asli/imbalanced (0.8450). Selain itu, kalibrasi model SMOTE terlihat kurang baik, ditandai 

dengan Optimal Threshold yang sangat tinggi (0.9829). Angka ekstrem ini mengindikasikan bahwa model 

cenderung "ragu-ragu" akibat adanya noise atau tumpang tindih (overlapping) data di area batas keputusan. 

Interpolasi linear yang dilakukan SMOTE cenderung menciptakan sampel sintetis di ruang kosong yang tidak 

realistis secara semantik, sehingga mengaburkan decision boundary yang sebenarnya. Akibatnya, model kehilangan 

sensitivitasnya dan membutuhkan probabilitas nyaris 100% untuk berani memprediksi fraud, kondisi yang sangat 

berisiko dalam sistem keamanan finansial. 

2. Superiority of Generative Approach (CTGAN): Sebaliknya, pendekatan menggunakan CTGAN menunjukkan hasil 

yang paling optimal. Model ini unggul pada metrik Recall (0.8139) dan F1-Score (0.8534). Tingginya nilai Recall 

ini sangat penting dalam deteksi fraud untuk meminimalkan lolosnya transaksi curang (False Negative). Berbeda 

dengan SMOTE, model CTGAN memiliki threshold yang stabil di angka 0.4645 (mendekati 0.5), yang 

membuktikan bahwa data sintetis mampu memperjelas batasan antar kelas tanpa merusak distribusi data aslinya. 

Keunggulan ini berasal dari kemampuan CTGAN dalam mempelajari manifold data yang kompleks melalui 

adversarial training, sehingga sampel yang dihasilkan tetap berada dalam distribusi fitur yang valid namun 

menambah variasi yang diperlukan oleh model untuk belajar. 

3. Operational and Financial Implications: Dari perspektif operasional perbankan, penggunaan model berbasis 

CTGAN menawarkan efisiensi yang signifikan. Dengan nilai Recall yang tinggi, bank dapat mengurangi risiko 

kerugian finansial akibat chargeback fraud yang tidak terdeteksi. Meskipun threshold yang lebih rendah mungkin 

sedikit meningkatkan jumlah False Positive (transaksi sah yang dicurigai), biaya operasional untuk verifikasi 

manual melalui SMS atau telepon jauh lebih rendah dibandingkan kerugian reputasi dan finansial akibat fraud yang 

lolos. Selain itu, stabilitas model ini menjamin bahwa sistem tidak perlu dikalibrasi ulang terlalu sering, sehingga 

mengurangi downtime dan biaya maintenance sistem deteksi fraud dalam jangka panjang. 

Temuan ini mengisi celah fundamental dalam literatur dengan mengalihkan fokus dari pendekatan Model-

Centric ke Data-Centric AI. Studi terdahulu seperti Dharmana dkk. (2024) melalui teknik ADASYN hanya mencatatkan 

F1-Score sebesar 81%, sementara arsitektur kompleks Hybrid Autoencoder-Transformer milik Priatna dkk. (2025) 

stagnan pada F1-Score 80% dan Recall 74%. Hal ini mengindikasikan bahwa algoritma Deep Learning canggih 

sekalipun tidak akan optimal tanpa pengayaan data yang kontekstual. 

Berbeda secara signifikan, penelitian ini membuktikan bahwa kualitas fitur lebih krusial daripada kompleksitas 

arsitektur. Melalui integrasi Feature Engineering berbasis domain (velocity dan risk scoring) serta dukungan data 

sintetis CTGAN, model yang diusulkan berhasil mencapai F1-Score 85,34% dan Recall 81,39%. Peningkatan performa 

dibandingkan baseline Priatna dkk. (2025) ini mengonfirmasi secara empiris bahwa strategi pengayaan data adalah 

kunci utama dalam melampaui batasan kinerja deteksi anomali finansial. 



TIN: Terapan Informatika Nusantara 
Vol 6, No 8, January 2026, page 1308-1321 
ISSN 2722-7987 (Media Online) 
Website https://ejurnal.seminar-id.com/index.php/tin 
DOI 10.47065/tin.v6i8.9056 

Copyright © 2026 the author, Page 1319  
This Journal is licensed under a Creative Commons Attribution 4.0 International License 

3.4 Model Interpretability Analysis (SHAP) 

Analisis lanjutan menggunakan metode SHAP (SHapley Additive exPlanations) dilakukan untuk menginterpretasikan 

keputusan model TabTransformer yang bersifat black-box. Analisis ini bertujuan untuk memvalidasi apakah fitur-fitur 

hasil rekayasa (feature engineering) benar-benar memberikan kontribusi signifikan terhadap deteksi fraud. Visualisasi 

global mengenai kontribusi fitur disajikan pada Gambar 10. 

 

Gambar 9.SHAP Summary Plot 

Interpretasi perilaku model melalui summary plot tersebut dapat dijabarkan dalam 3 poin utama berikut: 

1. Dominance of Engineered Features: Visualisasi tersebut mengonfirmasi efektivitas strategi rekayasa fitur dalam 

penelitian ini. Terlihat bahwa daftar 10 fitur dengan pengaruh terbesar didominasi oleh fitur turunan (engineered 

features), seperti merchantRisk, custStepDiff, dan categoryRisk. Dominasi ini menjadi bukti empiris bahwa variabel 

risiko yang diekstraksi melalui proses feature engineering memberikan informasi yang jauh lebih berharga bagi 

model dibandingkan sekadar menggunakan data transaksional mentah.  

2. Behavioral Patterns and Risk Correlation: Fitur categoryRisk dan merchantRisk memperlihatkan korelasi linear 

positif terhadap prediksi. Sebaran titik merah (nilai risiko tinggi) yang terkonsentrasi di sisi kanan (nilai SHAP 

positif) menegaskan bahwa semakin tinggi skor risiko historis, semakin besar probabilitas transaksi dideteksi 

sebagai fraud. Sebaliknya, pada fitur merchFreq ditemukan pola hubungan terbalik. Titik biru (frekuensi rendah) 

yang berada di area positif mengindikasikan bahwa model cenderung mencurigai transaksi yang dilakukan pada 

merchant yang jarang atau baru pertama kali dikunjungi oleh nasabah. 

3. Statistical Anomalies as Fraud Signals: Kontribusi signifikan juga ditunjukkan oleh fitur statistik amtZScoreByCat. 

Pola sebaran data menunjukkan bahwa model sangat sensitif terhadap deviasi nilai transaksi. Transaksi dengan 

nominal yang menyimpang jauh dari rata-rata kategori (Z-Score tinggi) secara konsisten mendorong prediksi ke arah 

fraud. Hal ini membuktikan bahwa model berhasil menangkap logika deteksi anomali berbasis statistik secara 

akurat. 

Secara keseluruhan, analisis SHAP ini tidak hanya memvalidasi performa teknis model, tetapi juga menjamin 

aspek akuntabilitas sistem. Dalam industri finansial yang terikat regulasi ketat, kemampuan untuk menjelaskan alasan di 

balik pemblokiran transaksi (Explainable AI) adalah syarat mutlak. Fakta bahwa model TabTransformer mendasarkan 

keputusannya pada indikator logis—seperti anomali nilai transaksi dan profil risiko—menegaskan bahwa performa 

tingginya bukan disebabkan oleh noise, melainkan pemahaman mendalam terhadap pola kejahatan finansial. Dominasi 

fitur rekayasa dalam plot ini sekaligus menjawab hipotesis penelitian bahwa kualitas Feature Engineering memegang 

peran sentral dalam keberhasilan klasifikasi kejahatan finansial. 

Sinergi antara CTGAN, TabTransformer, dan SHAP dalam penelitian ini menawarkan kerangka kerja yang 

komprehensif untuk ekosistem keamanan perbankan digital. CTGAN menyelesaikan masalah di sisi hulu (ketersediaan 

data), TabTransformer memberikan performa tinggi di sisi pemrosesan (akurasi deteksi), dan SHAP memberikan 

validitas di sisi hilir (transparansi keputusan). Temuan ini mengimplikasikan bahwa masa depan deteksi fraud tidak bisa 

lagi hanya bergantung pada satu algoritma klasifikasi semata, melainkan membutuhkan orkestrasi pipeline cerdas yang 

menangani siklus hidup data dari sintesis hingga interpretasi. 

4. KESIMPULAN 

Penelitian ini secara komprehensif menyimpulkan bahwa pergeseran paradigma dari pendekatan Model-Centric menuju 

Data-Centric AI merupakan kunci fundamental untuk mengatasi tantangan klasifikasi fraud pada data dengan 

ketimpangan ekstrem. Integrasi strategis antara rekayasa fitur berbasis domain (feature engineering), sintesis data 

generatif (CTGAN), dan arsitektur TabTransformer terbukti mampu membentuk model deteksi yang jauh lebih cerdas 
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dibandingkan metode konvensional. Berbeda dengan studi terdahulu yang cenderung stagnan akibat ketergantungan 

pada interpolasi linear sederhana (SMOTE/ADASYN), pendekatan hibrida ini berhasil mereplikasi distribusi 

probabilitas gabungan yang kompleks. Hal ini dibuktikan secara empiris melalui capaian kinerja superior dengan F1-

Score sebesar 85,34% dan Recall 81,39%, yang mengindikasikan bahwa model mampu mengenali pola anomali secara 

presisi tanpa mengorbankan sensitivitas. Secara implikasi praktis, temuan ini memberikan kontribusi strategis bagi 

ekosistem perbankan digital. Kemampuan model dalam menekan angka False Negative berdampak langsung pada 

minimalisasi kerugian finansial akibat transaksi curang yang tidak terdeteksi. Lebih jauh lagi, integrasi metode 

interpretasi SHAP menyediakan transparansi keputusan yang akuntabel, sehingga mempermudah proses audit 

kepatuhan dan meningkatkan efisiensi operasional tim analis dalam memverifikasi peringatan dini. Namun, penelitian 

ini memiliki keterbatasan utama pada penggunaan dataset simulasi yang bersifat statis, sehingga belum sepenuhnya 

menangkap fenomena perubahan perilaku serangan yang dinamis (concept drift) yang kerap terjadi di dunia nyata. Oleh 

karena itu, penelitian selanjutnya sangat direkomendasikan untuk memvalidasi kerangka kerja ini pada data transaksi 

riil berskala besar serta menerapkan mekanisme pembelajaran berkelanjutan (continuous learning) agar sistem 

pertahanan tetap adaptif dan relevan dalam menghadapi evolusi modus kejahatan finansial yang terus berkembang. 
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