Prediksi Hasil Produksi Kelapa Sawit PTPN IV Bahjambi Menggunakan Algoritma Backpropagation


  • Venny Vidya utari * Mail STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Anjar Wanto STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Indra Gunawan STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Sumarno Sumarno STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Zulaini Masruro Nasution STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • (*) Corresponding Author
Keywords: Oil Palm; Prediction; Production; Algorithm; Backpropagation

Abstract

Oil palm is a tropical plant of the Indonesian natural palmae group which has a tropical climate. The growth and harvest of oil palm also depends on fertilizers and the rainfall that falls every day. To get good production results it requires high ability and a lot of labor. Each production result certainly does not always increase, there must be a time when the production will decrease, therefore an algorithm is needed to predict it so that companies can find out the development of palm oil production in the future. In this study, researchers used the Backpropagation Algorithm. The Backpropagation Algorithm is an algorithm that functions to reduce the error rate by adjusting the weight based on the desired output and target, there are 5 training and data testing architectural models, namely 2-21-1, 2-22-1, 2-24-1, 2-26 -1 and 2-28-1. From the results of testing data on oil palm production, the best architectural model is obtained, namely 2-22-1 which shows that the target is reduced by the output that SSE is 0.35206024, from the data obtained, the performance of the calculation of artificial neural networks with the Backpropagation Algorithm gets an accuracy of 83.3%. . So that it can be used as a benchmark in predicting palm oil production, seen from the comparison of the desired target with the predicted target

Downloads

Download data is not yet available.

References

A. A. Thoha and . Sudradjat, “Pengelolaan Panen Kelapa Sawit (Elaeis guineensis Jacq.) di Kebun Adolina, Sumatera Utara,” Bul. Agrohorti, vol. 5, no. 2, p. 157, 2017, doi: 10.29244/agrob.5.2.157-166.

R. Aulia, S. Informasi, and S. R. Kisaran, “BERDASARKAN TINGKAT HUNIAN HOTEL,” vol. IV, no. 2, pp. 1–8, 2018.

N. P. Sakinah, I. Cholissodin, and A. W. Widodo, “Prediksi Jumlah Permintaan Koran Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation,” vol. 2, no. 7, pp. 2612–2618, 2019.

R. S. Suhartanto, C. Dewi, and L. Muflikhah, “Implementasi Jaringan Syaraf Tiruan Backpropagation untuk Mendiagnosis Penyakit Kulit pada Anak,” vol. 1, no. 7, pp. 555–562, 2017.

B. Studi, K. Di, and K. Bengkulu, “JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI LAJU PERTUMBUHAN PENDUDUK MENGGUNAKAN METODE,” vol. 12, no. 1, pp. 61–69, 2019.

Sutojo, “Jaringan Syaraf Tiruan Prediksi,” pp. 1–13, 2017.

A. Sudarsono, “Jaringan Syaraf Tiruan Untuk Memprediksi Laju Pertumbuhan Penduduk Menggunakan Metode Backpropagation,” J. Media Infotama, vol. 12, no. 1, pp. 61–69, 2016.

A. Wanto and A. P. Windarto, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation,” J. Penelit. Tek. Inform., vol. 2, no. 2, pp. 37–44, 2017.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Prediksi Hasil Produksi Kelapa Sawit PTPN IV Bahjambi Menggunakan Algoritma Backpropagation

Issue
Section
Articles