Perbandingan Kinerja RNN dan CNN Dalam Klasifikasi Sentimen Ulasan Pengguna Aplikasi di Play Store
Abstract
The public frequently shares their thoughts and opinions on various topics, such as products, public figures, or government policies, through online platforms. The process of analyzing review data is referred to as sentiment analysis. This study aims to compare the performance of two deep learning models Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) in classifying user sentiments across five review categories from the Google Play Store: design, photography, gaming, social media, and streaming. Choosing the right algorithm is essential to achieving optimal accuracy, given the variations in language and expression patterns within reviews. The dataset used in this study consists of 50,000 reviews with an imbalanced distribution of positive and negative sentiments. To address this imbalance, oversampling techniques were applied using the Synthetic Minority Oversampling Technique (SMOTE). The evaluation process measured each model's accuracy and loss levels. The results show that CNN consistently outperformed RNN across most categories. For the design category, CNN achieved the highest accuracy of 85% with a loss value of 0.41, compared to RNN, which achieved 83% accuracy and a loss of 0.53. On the other hand, the streaming category showed the lowest performance, with CNN achieving an accuracy of 69% and a loss of 0.63, while RNN achieved 67% accuracy with a loss of 0.72. These findings highlight CNN's superior effectiveness in sentiment analysis across diverse user review categories.
Downloads
References
D. P. Santoso and W. Wibowo, “Analisis Sentimen Ulasan Aplikasi Buzzbreak Menggunakan Metode Naïve Bayes Classifier pada Situs Google Play Store,” J. Sains dan Seni ITS, vol. 11, no. 2, 2022, doi: 10.12962/j23373520.v11i2.72534.
I. Aida Sapitri and M. Fikry, “Pengklasifikasian Sentimen Ulasan Aplikasi Whatsapp Pada Google Play Store Menggunakan Support Vector Machine,” J. TEKINKOM, vol. 6, no. 1, pp. 1–7, 2023, doi: 10.37600/tekinkom.v6i1.773.
E. Sera, Hazriani, Mirfan, and Yuyun, “Analisis Sentimen Ulasan Produk di E-Commerce Bukalapak Menggunakan Natural Language Processing,” Pros. SISFOTEK, pp. 237–243, 2023, [Online]. Available: http://www.seminar.iaii.or.id/index.php/SISFOTEK/article/view/406%0Ahttp://www.seminar.iaii.or.id/index.php/SISFOTEK/article/download/406/338
I. M. Karo Karo, J. A. Karo Karo, Y. Yunianto, H. Hariyanto, M. Falah, and M. Ginting, “Analisis Sentimen Ulasan Aplikasi Info BMKG di Google Play Menggunakan TF-IDF dan Support Vector Machine,” J. Inf. Syst. Res., vol. 4, no. 4, pp. 1423–1430, 2023, doi: 10.47065/josh.v4i4.3943.
R. Maulana, A. Voutama, and T. Ridwan, “Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store menggunakan Algoritma NBC,” J. Teknol. Terpadu, vol. 9, no. 1, pp. 42–48, 2023, doi: 10.54914/jtt.v9i1.609.
M. Diki Hendriyanto, A. A. Ridha, and U. Enri, “Analisis Sentimen Ulasan Aplikasi Mola Pada Google Play Store Menggunakan Algoritma Support Vector Machine Sentiment Analysis of Mola Application Reviews on Google Play Store Using Support Vector Machine Algorithm,” J. Inf. Technol. Comput. Sci., vol. 5, no. 1, pp. 1–7, 2022.
A. Nurian, “Analisis Sentimen Ulasan Pengguna Aplikasi Google Play Menggunakan Naïve Bayes,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3s1, pp. 829–835, 2023, doi: 10.23960/jitet.v11i3s1.3348.
T. Tinaliah and T. Elizabeth, “Analisis Sentimen Ulasan Aplikasi PrimaKu Menggunakan Metode Support Vector Machine,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 4, pp. 3436–3442, 2022, doi: 10.35957/jatisi.v9i4.3586.
I. Akbar and M. Faisal, “Perbandingan Analisis Sentimen PLN Mobile: Machine Learning vs. Deep Learning,” J. Inf. Technol. Comput. Sci., vol. 8, no. 1, pp. 01–10, 2024.
N. M. Farhan and B. Setiaji, “Indonesian Journal of Computer Science,” Indones. J. Comput. Sci., vol. 12, no. 2, pp. 284–301, 2023, [Online]. Available: http://ijcs.stmikindonesia.ac.id/ijcs/index.php/ijcs/article/view/3135
A. Hepatitis et al., “Perbandingan Metode Decision Tree dan Support Vector Machine untuk Analisis Sentimen pada Instagram Mengenai Kinerja PSSI,” 2020.
D. Muhidin and A. Wibowo, “Perbandingan Kinerja Algoritma Support Vector Machine dan K-Nearest Neighbor Terhadap Analisis Sentimen Kebijakan New Normal,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 5, no. 2, p. 153, 2020, doi: 10.30998/string.v5i2.6715.
A. Supian, B. Tri Revaldo, N. Marhadi, L. Efrizoni, and R. Rahmaddeni, “Perbandingan Kinerja Naïve Bayes Dan Svm Pada Analisis Sentimen Twitter Ibukota Nusantara,” J. Ilm. Inform., vol. 12, no. 01, pp. 15–21, 2024, doi: 10.33884/jif.v12i01.8721.
F. O. Dayera, Musa Bundaris Palungan, “Komparasi Algoritma Machine Learning Untuk Menganalisis Sentimen Ulasan Pada Aplikasi Digital Korlantas Polri,” G-Tech J. Teknol. Terap., vol. 8, no. 1, pp. 186–195, 2024, [Online]. Available: https://ejournal.uniramalang.ac.id/index.php/g-tech/article/view/1823/1229
M. H. Wicaksono, M. D. Purbolaksono, and S. Al Faraby, “Perbandingan Algoritma Machine Learning untuk Analisis Sentimen Berbasis Aspek pada Review Female Daily,” eProceedings Eng., vol. 10, no. 3, pp. 3591–3600, 2023.
R. A. E. V. T. Sapanji, D. Hamdani, and P. Harahap, “Sentiment Analysis of the Top 5 E-commerce Platforms in Indonesia using Text Mining and Natural Language Processing (NLP),” J. Appl. Informatics Comput., vol. 7, no. 2, pp. 202–211, 2023, doi: 10.30871/jaic.v7i2.6517.
M. Scientifict and J. Volume, “Perbandingan Algoritma Decision Tree dan Deep Learning dalam Prediksi Masalah Kesehatan berdasarkan Kebiasaan Gaya Hidup,” 2024.
E. Setia Budi, A. Nofriyaldi Chan, P. Priscillia Alda, and M. Arif Fauzi Idris, “RESOLUSI : Rekayasa Teknik Informatika dan Informasi Optimasi Model Machine Learning untuk Klasifikasi dan Prediksi Citra Menggunakan Algoritma Convolutional Neural Network,” Media Online, vol. 4, no. 5, p. 509, 2024, [Online]. Available: https://djournals.com/resolusi
N. Lubis, M. Z. Siambaton, and R. Aulia, “Implementasi Algoritma Deep Learning pada Aplikasi Speech to Text Online dengan Metode Recurrent Neural Network (RNN),” sudo J. Tek. Inform., vol. 3, no. 3, pp. 113–126, 2024, doi: 10.56211/sudo.v3i3.583.
A. R. Prananda, E. L. Frannita, E. Pramitaningrum, A. Hidayat, W. B. Setiawan, and N. Purwaningsih, “Klasifikasikan Jenis Cacat Kulit Menggunakan SMOTE-GoogLeNet,” JITU J. Inform. Technol. Commun., vol. 8, no. 1, pp. 21–30, 2024, doi: 10.36596/jitu.v8i1.1341.
R. A. Nurdian, Mujib Ridwan, and Ahmad Yusuf, “Komparasi Metode SMOTE dan ADASYN dalam Meningkatkan Performa Klasifikasi Herregistrasi Mahasiswa Baru,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 1, pp. 24–32, 2022, doi: 10.28932/jutisi.v8i1.4004.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Perbandingan Kinerja RNN dan CNN Dalam Klasifikasi Sentimen Ulasan Pengguna Aplikasi di Play Store
Pages: 349-362
Copyright (c) 2024 Satria Nugraha Saputra, Galet Guntoro Setiaji, Max Teja Ajie Cipta Widiyanto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).