Understanding Hotel Customer Experience through User-Generated Reviews using Knowledge Discovery in Databases (KDD)


  • Yerik Afrianto Singgalen * Mail Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
  • (*) Corresponding Author
Keywords: Customer Experience; Hotel; User-Generated Reviews; KDD

Abstract

This research explores the analysis of 388 hotel customer reviews to understand guest experiences, employing advanced analytical methodologies to uncover valuable insights for service quality enhancement. Utilizing the Knowledge Discovery in Databases (KDD) framework, the study applies Latent Dirichlet Allocation (LDA) for topic clustering and k-nearest Neighbors (k-NN), enhanced by the Synthetic Minority Over-sampling Technique (SMOTE) for sentiment classification. The integration of these techniques allows for the extraction of coherent thematic patterns and the accurate differentiation of sentiment categories within the reviews. The findings reveal that LDA, evaluated through metrics such as log-likelihood (-54,886.092) and coherence scores (-14.949), effectively captures the underlying themes discussed by guests, providing a clear representation of customer priorities and concerns. Additionally, applying SMOTE significantly improves the k-NN model's performance, achieving an accuracy of 91.43% and a precision of 97.26% by balancing class distributions and enhancing classification accuracy. This approach demonstrates the potential of combining topic modeling and sentiment analysis to derive actionable insights, which can be strategically utilized to optimize service delivery and elevate the overall customer experience in the hospitality industry. The study concludes that leveraging such data-driven methodologies facilitates a deeper understanding of customer feedback, ultimately supporting informed decision-making and continuous service improvement.

Downloads

Download data is not yet available.

References

G. D. Mendonça, S. R. de M. Oliveira, O. F. Lima, and P. T. V. de Resende, “Intelligent algorithms applied to the prediction of air freight transportation delays,” Int. J. Phys. Distrib. Logist. Manag., vol. 54, no. 1, pp. 61–91, Jan. 2024, doi: 10.1108/IJPDLM-10-2022-0328.

O. A. George and C. M. Q. Ramos, “Sentiment analysis applied to tourism: exploring tourist-generated content in the case of a wellness tourism destination,” Int. J. Spa Wellness, vol. 7, no. 2, pp. 139–161, 2024, doi: 10.1080/24721735.2024.2352979.

N. Amat-Lefort, F. Barravecchia, and L. Mastrogiacomo, “Quality 4.0: big data analytics to explore service quality attributes and their relation to user sentiment in Airbnb reviews,” Int. J. Qual. Reliab. Manag., vol. 40, no. 4, pp. 990–1008, Jan. 2023, doi: 10.1108/IJQRM-01-2022-0024.

İ. A. Özen and E. Özgül Katlav, “Aspect-based sentiment analysis on online customer reviews: a case study of technology-supported hotels,” J. Hosp. Tour. Technol., vol. 14, no. 2, pp. 102–120, Jan. 2023, doi: 10.1108/JHTT-12-2020-0319.

S. Bagherzadeh, S. Shokouhyar, H. Jahani, and M. Sigala, “A generalizable sentiment analysis method for creating a hotel dictionary: using big data on TripAdvisor hotel reviews,” J. Hosp. Tour. Technol., vol. 12, no. 2, pp. 210–238, Jan. 2021, doi: 10.1108/JHTT-02-2020-0034.

M. Gao, J. Wang, and O. Liu, “Is UGC sentiment helpful for recommendation? An application of sentiment-based recommendation model,” Ind. Manag. Data Syst., vol. 124, no. 4, pp. 1356–1384, Jan. 2024, doi: 10.1108/IMDS-05-2023-0335.

G. Rasool and A. Pathania, “Reading between the lines: untwining online user-generated content using sentiment analysis,” J. Res. Interact. Mark., vol. 15, no. 3, pp. 401–418, Jan. 2021, doi: 10.1108/JRIM-03-2020-0045.

R. C. Ho, M. S. Withanage, and K. W. Khong, “Sentiment drivers of hotel customers: a hybrid approach using unstructured data from online reviews,” Asia-Pacific J. Bus. Adm., vol. 12, no. 3–4, pp. 237–250, Jan. 2020, doi: 10.1108/APJBA-09-2019-0192.

H. M. Zolbanin and D. Wynn, “From star rating to sentiment rating: using textual content of online reviews to develop more effective reputation systems for peer-to-peer accommodation platforms,” J. Bus. Anal., vol. 6, no. 2, pp. 127–139, Apr. 2023, doi: 10.1080/2573234X.2022.2122880.

C. Kaveski Peres and E. Pacheco Paladini, “Exploring the attributes of hotel service quality in Florianópolis-SC, Brazil: An analysis of tripAdvisor reviews,” Cogent Bus. Manag., vol. 8, no. 1, p. 1926211, Jan. 2021, doi: 10.1080/23311975.2021.1926211.

F. Leal, B. Malheiro, B. Veloso, and J. C. Burguillo, “Responsible processing of crowdsourced tourism data,” J. Sustain. Tour., vol. 29, no. 5, pp. 1–21, 2020, doi: 10.1080/09669582.2020.1778011.

A. Arabameri et al., “Flood susceptibility mapping using meta-heuristic algorithms,” Geomatics, Nat. Hazards Risk, vol. 13, no. 1, pp. 949–974, 2022, doi: 10.1080/19475705.2022.2060138.

Z. Z. Zarezadeh, R. Rastegar, and Z. Xiang, “Big data analytics and hotel guest experience: a critical analysis of the literature,” Int. J. Contemp. Hosp. Manag., vol. 34, no. 6, pp. 2320–2336, 2022, doi: 10.1108/IJCHM-10-2021-1293.

R. Iloranta and R. Komppula, “Service providers’ perspective on the luxury tourist experience as a product,” Scand. J. Hosp. Tour., vol. 22, no. 1, pp. 39–57, 2022, doi: 10.1080/15022250.2021.1946845.

N. N. Quang and D. C. Thuy, “Mindfulness affecting loyalty with mediating role of customer experience in the context of adventure tourism in Vietnam,” Cogent Soc. Sci., vol. 10, no. 1, p., 2024, doi: 10.1080/23311886.2024.2312651.

S. Girija, D. R. Sharma, and V. Kaushal, “Exploring dimensions of the customer experience at budget hotels during the COVID-19 pandemic: a netnography approach,” Qual. Mark. Res., vol. 26, no. 4, pp. 320–344, Jan. 2023, doi: 10.1108/QMR-03-2022-0039.

C. H. Lee, Q. Li, Y. C. Lee, and C. W. Shih, “Service design for intelligent exhibition guidance service based on dynamic customer experience,” Ind. Manag. Data Syst., vol. 121, no. 6, pp. 1237–1267, Jan. 2020, doi: 10.1108/IMDS-06-2020-0356.

M. S. Viñán-Ludeña and L. M. de Campos, “Analyzing tourist data on Twitter: a case study in the province of Granada at Spain,” J. Hosp. Tour. Insights, vol. 5, no. 2, pp. 435–464, Jan. 2022, doi: 10.1108/JHTI-11-2020-0209.

T. Falatouri, P. Brandtner, M. Nasseri, and F. Darbanian, “Service quality dimensions in Austrian food retailing–a text mining approach for physical retail stores,” Int. Rev. Retail. Distrib. Consum. Res., vol. 00, no. 00, pp. 1–36, 2024, doi: 10.1080/09593969.2024.2371456.

Y. Wu, J. Wang, Y. Xia, Q. Li, and Y. Pan, “Sensing hotel customers distribution and their sentiment variations using online travel agent data: a case of Shanghai star-rated hotels,” Ann. GIS, vol. 30, no. 3, pp. 323–343, 2024, doi: 10.1080/19475683.2024.2335976.

M. Mariani and M. Borghi, “Environmental discourse in hotel online reviews: a big data analysis,” J. Sustain. Tour., vol. 29, no. 5, pp. 829–848, 2020, doi: 10.1080/09669582.2020.1858303.

T. Albayrak, A. Dursun-Cengizci, L. H. N. Fong, and M. Caber, “The changing role of hotel attributes in destination competitiveness throughout a crisis,” Int. J. Contemp. Hosp. Manag., vol. 36, no. 10, pp. 3264–3282, Jan. 2024, doi: 10.1108/IJCHM-06-2023-0779.

R. Rahimi, M. Thelwall, F. Okumus, and A. Bilgihan, “Know your guests’ preferences before they arrive at your hotel: evidence from TripAdvisor,” Consum. Behav. Tour. Hosp., vol. 17, no. 1, pp. 89–106, Jan. 2022, doi: 10.1108/CBTH-06-2021-0148.

H. Xu, L. T. O. Cheung, J. Lovett, X. Duan, Q. Pei, and D. Liang, “Understanding the influence of user-generated content on tourist loyalty behavior in a cultural World Heritage Site,” Tour. Recreat. Res., vol. 48, no. 2, pp. 173–187, 2023, doi: 10.1080/02508281.2021.1913022.

T. D. Quang, N. M. P. Tran, E. Sthapit, and B. Garrod, “Exploring Guests’ Satisfaction and Dissatisfaction with Homestay Experiences: A Netnographic Study of a Rural Tourism Destination in Vietnam,” Int. J. Hosp. Tour. Adm., vol. 00, no. 00, pp. 1–25, 2024, doi: 10.1080/15256480.2024.2350005.

D. D’Acunto, S. Volo, and R. Filieri, “‘Most Americans like their privacy.’ Exploring privacy concerns through US guests’ reviews,” Int. J. Contemp. Hosp. Manag., vol. 33, no. 8, pp. 2773–2798, Jan. 2021, doi: 10.1108/IJCHM-11-2020-1329.

F. Hu, R. Trivedi, and T. Teichert, “Using hotel reviews to assess hotel frontline employees’ roles and performances,” Int. J. Contemp. Hosp. Manag., vol. 34, no. 5, pp. 1796–1822, Jan. 2022, doi: 10.1108/IJCHM-04-2021-0491.

M. J. Sánchez-Franco and S. Rey-Tienda, “The role of user-generated content in tourism decision-making: an exemplary study of Andalusia, Spain,” Manag. Decis., vol. 62, no. 7, pp. 2292–2328, Jan. 2024, doi: 10.1108/MD-06-2023-0966.

“User-generated online content and hospitality firms: Identifying appropriate response strategies,” Strateg. Dir., vol. 36, no. 9, pp. 49–52, Jan. 2020, doi: 10.1108/SD-07-2020-0131.

V. O. Olorunsola, M. B. Saydam, T. T. Lasisi, and K. K. Eluwole, “Customer experience management in capsule hotels: a content analysis of guest online review,” J. Hosp. Tour. Insights, vol. 6, no. 5, pp. 2462–2483, 2023, doi: 10.1108/JHTI-03-2022-0113.

S. Bharwani and D. Mathews, “Techno-business strategies for enhancing guest experience in luxury hotels: a managerial perspective,” Worldw. Hosp. Tour. Themes, vol. 13, no. 2, pp. 168–185, 2021, doi: 10.1108/WHATT-09-2020-0121.

A. Yucel, M. Caglar, H. Ahady Dolatsara, B. George, and A. Dag, “Predicting hotel reviews from sentiment: a multinomial classification framework,” J. Model. Manag., vol. 17, no. 2, pp. 697–714, Jan. 2022, doi: 10.1108/JM2-09-2020-0255.

A. Tanrısevdi, G. Öztürk, and A. C. Öztürk, “A supervised data mining approach for predicting comment card ratings,” Int. J. Contemp. Hosp. Manag., vol. 34, no. 5, pp. 1823–1853, 2022, doi: 10.1108/IJCHM-05-2021-0675.

A. Kayumov, Y. joo Ahn, K. Kiatkawsin, I. Sutherland, and S. Zielinski, “Service quality and customer loyalty in halal ethnic restaurants amid the COVID-19 pandemic: a study of halal Uzbekistan restaurants in South Korea,” Cogent Soc. Sci., vol. 10, no. 1, p., 2024, doi: 10.1080/23311886.2024.2301814.

M. V. Ciasullo, R. Montera, and R. Palumbo, “Online content responsiveness strategies in the hospitality context: exploratory insights and a research agenda,” TQM J., vol. 36, no. 9, pp. 234–254, Jan. 2020, doi: 10.1108/TQM-12-2019-0299.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Understanding Hotel Customer Experience through User-Generated Reviews using Knowledge Discovery in Databases (KDD)

Dimensions Badge
Article History
Submitted: 2024-10-02
Published: 2024-11-15
Abstract View: 75 times
PDF Download: 0 PDF Download: 42 times
Section
Articles