Sentiment and Toxicity Analysis of Biometric Authentication and Facial Recognition Technology Content Reviews using Cross-Industry Standard Process for Data-Mining
Abstract
This study investigates sentiment analysis methodologies within the framework of CRISP-DM (Cross-Industry Standard Process for Data Mining), aiming to discern the efficacy of various algorithms in sentiment classification tasks. The research uses a structured approach to evaluate SVM, NBC, DT, and K-NN algorithms with the SMOTE oversampling technique, uncovering distinct performance metrics and limitations. Results indicate SVM achieving 59.88% accuracy, NBC at 59.25%, DT with 52.09%, and K-NN obtaining 54.80%, highlighting the differential precision, recall, and f-measure. Additionally, content analysis identifies pertinent themes such as Biometric security, Cloud storage, and Emotion Analysis, enriching sentiment dynamics comprehension. The toxicity scores of analyzed videos reveal nuanced sentiment nuances, with the first video exhibiting Toxicity: 0.13227 and the second scoring Toxicity: 0.12794. This study underscores the significance of informed algorithm selection and evaluation methodologies within CRISP-DM, fostering optimized sentiment analysis outcomes while acknowledging diverse topical nuances.
Downloads
References
A. N. Uwaechia and D. A. Ramli, “A Comprehensive Survey on ECG Signals as New Biometric Modality for Human Authentication: Recent Advances and Future Challenges,” IEEE Access, vol. 9, pp. 97760–97802, 2021, doi: 10.1109/ACCESS.2021.3095248.
R. Ryu, S. Yeom, S. H. Kim, and D. Herbert, “Continuous Multimodal Biometric Authentication Schemes: A Systematic Review,” IEEE Access, vol. 9, pp. 34541–34557, 2021, doi: 10.1109/ACCESS.2021.3061589.
A. Ali, M. Testa, L. Markhasin, T. Bianchi, and E. Magli, “Adversarial Learning of Mappings onto Regularized Spaces for Biometric Authentication,” IEEE Access, vol. 8, pp. 149316–149331, 2020, doi: 10.1109/ACCESS.2020.3016599.
M. Ingale, R. Cordeiro, S. Thentu, Y. Park, and N. Karimian, “ECG Biometric Authentication: A Comparative Analysis,” IEEE Access, vol. 8, pp. 117853–117866, 2020, doi: 10.1109/ACCESS.2020.3004464.
H. J. Mun and M. H. Lee, “Design for Visitor Authentication Based on Face Recognition Technology Using CCTV,” IEEE Access, vol. 10, no. November, pp. 124604–124618, 2022, doi: 10.1109/ACCESS.2022.3223374.
R. Arjona and I. Baturone, “A post-quantum biometric template protection scheme based on learning parity with noise (LPN) commitments,” IEEE Access, vol. 8, pp. 182355–182365, 2020, doi: 10.1109/ACCESS.2020.3028703.
A. A. Al-Saggaf, “A Post-Quantum Fuzzy Commitment Scheme for Biometric Template Protection: An Experimental Study,” IEEE Access, vol. 9, pp. 110952–110961, 2021, doi: 10.1109/ACCESS.2021.3100981.
X. Zhang, D. Cheng, P. Jia, Y. Dai, and X. Xu, “An Efficient Android-Based Multimodal Biometric Authentication System with Face and Voice,” IEEE Access, vol. 8, pp. 102757–102772, 2020, doi: 10.1109/ACCESS.2020.2999115.
H. Y. Kwon and M. K. Lee, “Comments on ‘PassBio: Privacy-Preserving User-Centric Biometric Authentication,’” IEEE Trans. Inf. Forensics Secur., vol. 17, pp. 2816–2817, 2022, doi: 10.1109/TIFS.2022.3195380.
W. Yan, J. Tang, and S. Stucki, “Design and Implementation of a Lightweight Deep CNN-Based Plant Biometric Authentication System,” IEEE Access, vol. 11, no. August, pp. 79984–79993, 2023, doi: 10.1109/ACCESS.2023.3296801.
W. El-Shafai, F. A. H. E. Mohamed, H. M. A. Elkamchouchi, M. Abd-Elnaby, and A. Elshafee, “Efficient and Secure Cancelable Biometric Authentication Framework Based on Genetic Encryption Algorithm,” IEEE Access, vol. 9, pp. 77675–77692, 2021, doi: 10.1109/ACCESS.2021.3082940.
S. Hinatsu, D. Suzuki, H. Ishizuka, S. Ikeda, and O. Oshiro, “Evaluation of PPG Feature Values Toward Biometric Authentication Against Presentation Attacks,” IEEE Access, vol. 10, pp. 41352–41361, 2022, doi: 10.1109/ACCESS.2022.3167667.
L. Wu, L. Meng, S. Zhao, X. Wei, and H. Wang, “Privacy-Preserving Cancelable Biometric Authentication Based on RDM and ECC,” IEEE Access, vol. 9, pp. 90989–91000, 2021, doi: 10.1109/ACCESS.2021.3092018.
R. Ryu, S. Yeom, D. Herbert, and J. Dermoudy, “A Comprehensive Survey of Context-Aware Continuous Implicit Authentication in Online Learning Environments,” IEEE Access, vol. 11, no. February, pp. 24561–24573, 2023, doi: 10.1109/ACCESS.2023.3253484.
D. Palma, F. Blanchini, G. Giordano, and P. L. Montessoro, “A Dynamic Biometric Authentication Algorithm for Near-Infrared Palm Vascular Patterns,” IEEE Access, vol. 8, pp. 118978–118988, 2020, doi: 10.1109/ACCESS.2020.3005460.
Q. N. Tran, B. P. Turnbull, M. Wang, and J. Hu, “A Privacy-Preserving Biometric Authentication System With Binary Classification in a Zero Knowledge Proof Protocol,” IEEE Open J. Comput. Soc., vol. 3, no. January, pp. 1–10, 2021, doi: 10.1109/ojcs.2021.3138332.
J. Zhao et al., “A Secure Biometrics and PUFs-Based Authentication Scheme with Key Agreement for Multi-Server Environments,” IEEE Access, vol. 8, pp. 45292–45303, 2020, doi: 10.1109/ACCESS.2020.2975615.
K. Eledlebi, C. Y. Yeun, E. Damiani, and Y. Al-Hammadi, “Empirical Studies of TESLA Protocol: Properties, Implementations, and Replacement of Public Cryptography Using Biometric Authentication,” IEEE Access, vol. 10, pp. 21941–21954, 2022, doi: 10.1109/ACCESS.2022.3152895.
S. Vhaduri, S. V. Dibbo, and W. Cheung, “HIAuth: A Hierarchical Implicit Authentication System for IoT Wearables Using Multiple Biometrics,” IEEE Access, vol. 9, pp. 116395–116406, 2021, doi: 10.1109/ACCESS.2021.3105481.
B. Nakisa, F. Ansarizadeh, P. Oommen, and S. Shrestha, “Technology Acceptance Model: A Case Study of Palm Vein Authentication Technology,” IEEE Access, vol. 10, no. November, pp. 120436–120449, 2022, doi: 10.1109/ACCESS.2022.3221413.
P. Bauspieb et al., “BRAKE: Biometric Resilient Authenticated Key Exchange,” IEEE Access, vol. 12, no. January, pp. 46596–46615, 2024, doi: 10.1109/ACCESS.2024.3380915.
A. Pradhan, J. He, H. Lee, and N. Jiang, “Multi-Day Analysis of Wrist Electromyogram-Based Biometrics for Authentication and Personal Identification,” IEEE Trans. Biometrics, Behav. Identity Sci., vol. 5, no. 4, pp. 553–565, 2023, doi: 10.1109/TBIOM.2023.3299948.
A. Rahman et al., “Multimodal EEG and Keystroke Dynamics Based Biometric System Using Machine Learning Algorithms,” IEEE Access, vol. 9, pp. 94625–94643, 2021, doi: 10.1109/ACCESS.2021.3092840.
J. Coetzer, J. P. Swanepoel, and R. Sabourin, “Optimal human-machine collaboration for enhanced cost-sensitive biometric authentication,” SAIEE Africa Res. J., vol. 112, no. 2, pp. 110–119, 2021, doi: 10.23919/saiee.2021.9432899.
V. Kumar, A. Mohammed Ali Al-Tameemi, A. Kumari, M. Ahmad, M. W. Falah, and A. A. Abd El-Latif, “PSEBVC: Provably Secure ECC and Biometric Based Authentication Framework Using Smartphone for Vehicular Cloud Environment,” IEEE Access, vol. 10, no. July, pp. 84776–84789, 2022, doi: 10.1109/ACCESS.2022.3195807.
G. Li and H. Sato, “Sensing In-Air Signature Motions Using Smartwatch: A High-Precision Approach of Behavioral Authentication,” IEEE Access, vol. 10, pp. 57865–57879, 2022, doi: 10.1109/ACCESS.2022.3177905.
R. Zhang, Z. Yan, X. Wang, and R. H. Deng, “VOLERE: Leakage Resilient User Authentication Based on Personal Voice Challenges,” IEEE Trans. Dependable Secur. Comput., vol. 20, no. 2, pp. 1002–1016, 2023, doi: 10.1109/TDSC.2022.3147504.
A. Sedik et al., “Deep learning modalities for biometric alteration detection in 5g networks-based secure smart cities,” IEEE Access, vol. 9, pp. 94780–94788, 2021, doi: 10.1109/ACCESS.2021.3088341.
M. Mwapasa et al., “‘Are we getting the biometric bioethics right?’–the use of biometrics within the healthcare system in Malawi,” Glob. Bioeth., vol. 31, no. 1, pp. 67–80, 2020, doi: 10.1080/11287462.2020.1773063.
A. Thiel, “Biometric payment and gendered kinds in Ghana,” Tapuya Lat. Am. Sci. Technol. Soc., vol. 4, no. 1, 2021, doi: 10.1080/25729861.2021.1924486.
I. Z. P. Hamdan and M. Othman, “Predicting Customer Loyalty Using Machine Learning for Hotel Industry,” J. Soft Comput. Data Min., vol. 3, no. 2, pp. 31–42, 2022.
I. Maskanah, A. Primajaya, and A. Rizal, “Segmentasi Pelanggan Toko Purnama dengan Algoritma K-Means dan Model RFM untuk Perancangan Strategi Pemasaran,” J. INOVTEK Polbeng - Seri Inform., vol. 5, no. 2, pp. 218–228, 2020, doi: 10.35314/isi.v5i2.1443.
C. A. Fidas and D. Lyras, “A Review of EEG-Based User Authentication: Trends and Future Research Directions,” IEEE Access, vol. 11, no. February, pp. 22917–22934, 2023, doi: 10.1109/ACCESS.2023.3253026.
M. Suorsa and P. Helo, “Information security failures identified and measured–ISO/IEC 27001:2013 controls ranked based on GDPR penalty case analysis,” Inf. Secur. J., vol. 33, no. 3, pp. 285–306, 2024, doi: 10.1080/19393555.2023.2270984.
L. Laishram, J. T. Lee, and S. K. Jung, “Face De-Identification Using Face Caricature,” IEEE Access, vol. 12, no. November 2023, pp. 19344–19354, 2024, doi: 10.1109/ACCESS.2024.3356550.
M. Montenegro de Wit and M. Canfield, “‘Feeding the world, byte by byte’: emergent imaginaries of data productivism,” J. Peasant Stud., vol. 51, no. 2, pp. 381–420, 2024, doi: 10.1080/03066150.2023.2232997.
J. Wei, “Video face recognition of virtual currency trading system based on deep learning algorithms,” IEEE Access, vol. 9, pp. 32760–32773, 2021, doi: 10.1109/ACCESS.2021.3060458.
A. Wibowo, W. Alawiyah, and Azriadi, “The importance of personal data protection in Indonesia’s economic development,” Cogent Soc. Sci., vol. 10, no. 1, p., 2024, doi: 10.1080/23311886.2024.2306751.
A. Magunna, “Charting waters: the private sector’s evolving governance role in Southeast Asian maritime security,” Aust. J. Int. Aff., pp. 1–20, 2024, doi: 10.1080/10357718.2024.2337013.
R. Wevers, “Denormalising surveillance through curation in Face Value: Surveillance and Identity in the Age of Digital Face Recognition,” Media Pract. Educ., vol. 24, no. 2, pp. 182–198, 2023, doi: 10.1080/25741136.2023.2210425.
L. S. Luevano, L. Chang, H. Heydi Mendez-Vazquez, Y. Martinez-Diaz, and M. Gonzalez-Mendoza, “A Study on the Performance of Unconstrained Very Low Resolution Face Recognition: Analyzing Current Trends and New Research Directions,” IEEE Access, vol. 9, pp. 75470–75493, 2021, doi: 10.1109/ACCESS.2021.3080712.
P. C. P. Neto, J. R. Pinto, F. Boutros, N. Damer, A. F. Sequeira, and J. S. Cardoso, “Beyond Masks: On the Generalization of Masked Face Recognition Models to Occluded Face Recognition,” IEEE Access, vol. 10, no. July, pp. 86222–86233, 2022, doi: 10.1109/ACCESS.2022.3199014.
N. Li et al., “Chinese Face Dataset for Face Recognition in an Uncontrolled Classroom Environment,” IEEE Access, vol. 11, no. August, pp. 86963–86976, 2023, doi: 10.1109/ACCESS.2023.3302919.
H. O. Shahreza and S. Marcel, “Comprehensive Vulnerability Evaluation of Face Recognition Systems to Template Inversion Attacks via 3D Face Reconstruction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 12, pp. 14248–14265, 2023, doi: 10.1109/TPAMI.2023.3312123.
L. I. U. Jinjin, L. I. Qingbao, M. Liu, and T. Wei, “CP-GAN: A cross-pose profile face frontalization boosting pose-invariant face recognition,” IEEE Access, vol. 8, pp. 198659–198667, 2020, doi: 10.1109/ACCESS.2020.3033675.
H. Yang and X. Han, “Face recognition attendance system based on real-time video processing,” IEEE Access, vol. 8, pp. 159143–159150, 2020, doi: 10.1109/ACCESS.2020.3007205.
M. Zhang, R. Liu, D. Deguchi, and H. Murase, “Masked Face Recognition With Mask Transfer and Self-Attention Under the COVID-19 Pandemic,” IEEE Access, vol. 10, pp. 20527–20538, 2022, doi: 10.1109/ACCESS.2022.3150345.
H. H. Nguyen, S. Marcel, J. Yamagishi, and I. Echizen, “Master Face Attacks on Face Recognition Systems,” IEEE Trans. Biometrics, Behav. Identity Sci., vol. 4, no. 3, pp. 398–411, 2022, doi: 10.1109/TBIOM.2022.3166206.
P. Terhorst, M. Huber, N. Damer, F. Kirchbuchner, K. Raja, and A. Kuijper, “Pixel-Level Face Image Quality Assessment for Explainable Face Recognition,” IEEE Trans. Biometrics, Behav. Identity Sci., vol. 5, no. 2, pp. 288–297, 2023, doi: 10.1109/TBIOM.2023.3263186.
Z. Huang, J. Zhang, and H. Shan, “When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework and a New Benchmark,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 6, pp. 7917–7932, 2023, doi: 10.1109/TPAMI.2022.3217882.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Sentiment and Toxicity Analysis of Biometric Authentication and Facial Recognition Technology Content Reviews using Cross-Industry Standard Process for Data-Mining
Pages: 591-604
Copyright (c) 2024 Yerik Afrianto Singgalen

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















