Strategi Maximum Profit Algoritma Greedy dalam Kecerdasan Buatan Penentu Aktivitas Fisik pada Mobile Exergame


  • Siti Dwi Setiarini * Mail Politeknik Negeri Bandung, Bandung Barat, Indonesia
  • Sofy Fitriani Politeknik Negeri Bandung, Bandung Barat, Indonesia
  • Hashri Hayati Politeknik Negeri Bandung, Bandung Barat, Indonesia
  • (*) Corresponding Author
Keywords: Weight Loss Exergame; Reinforcement Learning; Greedy Algorithm; Maximum Profit; Determinant Of Physical Activity

Abstract

The Covid-19 pandemic has started to subside. However, after the pandemic subsided the obesity rate in Indonesia continued to increase. The new habits formed after the pandemic are activities that can be done at home. This is an opportunity to be able to reduce obesity by doing physical activity at home. Physical activity undertaken specifically to lose weight. However, various problems arise when doing physical activity. Such as requiring expensive fees, monotony, and others. Mobile exergame is one solution to this problem. In previous research, exergames that use the brute force algorithm in determining physical activity take a long time. This problem will be solved using a greedy algorithm which also uses a maximum profit strategy. Descriptive statistics are used to compare the average time needed by the two algorithms to select the physical activity to be performed in an exergame. The results of this study indicate that in terms of time the greedy algorithm that uses the maximum profit strategy is proven to be faster than the brute force algorithm.

Downloads

Download data is not yet available.

References

S. Kwok et al., “ Obesity: A critical risk factor in the COVID ‐19 pandemic ,” Clin Obes, vol. 10, no. 6, pp. 1–11, Dec. 2020, doi: 10.1111/COB.12403.

E. Shin, “Pandemic Fear and Weight Gain: Effects on Overweight and Obese Adults’ Purchasing Exercise Apparel Online,” Clothing and Textiles Research Journal, vol. 39, no. 3, pp. 232–246, Jul. 2021, doi: 10.1177/0887302X211004892.

UNICEF, “Indonesia: Angka orang yang kelebihan berat badan dan obesitas naik di semua kelompok usia dan pendapatan,” UNICEF, 2022. httpswww.unicef.orgindonesiaidpress-releasesindonesia-angka-orang-yang-kelebihan-berat-badan-dan-obesitas-naik-di-semua-kelompok%0A (accessed May 27, 2023).

J. Y. Mambu and A. H. Siar, “VRSurvival Runner: Aplikasi Exergaming Survival berbasis Virtual Reality,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 9, no. 3, pp. 427–434, 2020, doi: 10.32736/sisfokom.v9i3.985.

R. Noer et al., Strategi dalam Menghadapi Tantangan Kesehatan Pasca Pandemi Covid-19. Insania, 2021. [Online]. Available: https://books.google.com/books?hl=id&lr=&id=NC0nEAAAQBAJ&oi=fnd&pg=PP1&dq=gizi+balita+pasca+bencana&ots=izfGOLXrzw&sig=Ej_YbmkV5lOCw9PRDMr3JZcF-7Q%0Ahttps://www.google.co.id/books/edition/Strategi_dalam_Menghadapi_Tantangan_Kese/NC0nEAAAQBAJ?hl=id&gbpv=0

M. F. Nurmidin, Fatimawali, and J. Posangi, “Pengaruh Pandemi Covid-19 Terhadap Aktivitas Fisik dan Penerapan Prinsip Gizi Seimbang Pada Mahasiswa Pascasarjana,” Journal of Public Health and Community Medicine, vol. 1, no. 4, pp. 28–32, 2020.

K. Tanaka et al., “Professional dietary coaching within a group chat using a smartphone application for weight loss: A randomized controlled trial,” J Multidiscip Healthc, vol. 11, pp. 339–347, 2018, doi: 10.2147/JMDH.S165422.

M. V. Villasana et al., “Mobile Applications for the Promotion and Support of Healthy Nutrition and Physical Activity Habits: A Systematic Review, Extraction of Features and Taxonomy Proposal,” Open Bioinforma J, vol. 12, no. 1, pp. 50–71, Oct. 2019, doi: 10.2174/1875036201912010050.

H. L. Hashim, A. Kamaruddin, and A. H. Jantan, “The mobile exergames design model to encourage physical activity for sedentary generation Z,” in ACM International Conference Proceeding Series, Jakarta, 2019, pp. 137–141. doi: 10.1145/3328243.3328260.

P. Buddharaju and Y. Lokanathan, “Mobile exergaming: Exergames on the go,” in International Conference on Mobile Software Engineering and Systems, MOBILESoft 2016, Austin, 2016, pp. 25–26. doi: 10.1145/2897073.2897125.

S. Fitriani, S. D. Setiarini, and E. B. Soewono, “Simulasi Reinforcement Learning untuk Kecerdasan Buatan pada Exergame Penurun Berat Badan,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 1, p. 79, 2022, doi: 10.30865/jurikom.v9i1.3875.

S. N. Ubay, W. Andhyka Kusuma, and Z. Sari, “Pengembangan Sistem Monitoring Langkah Kaki Dengan Sensor MPU6050 Untuk Menghitung Jumlah Penurunan Berat Badan Berbasis Android,” REPOSITOR, vol. 2, no. 2, pp. 123–128, Feb. 2020.

R. N. Devita and A. P. Wibawa, “Sains, Aplikasi, Komputasi dan Teknologi Informasi Teknik-teknik optimasi knapsack problem,” Teknik-teknik optimasi knapsack problem, vol. 2, no. 1, p. 35, 2020.

A. Billionnet, “Approximation algorithms for fractional knapsack problems,” Operations Research Letters, vol. 30, no. 5, pp. 336–342, 2002, doi: 10.1016/S0167-6377(02)00157-8.

M. Zhang, Y. Chen, Z. Xia, J. Du, and W. Susilo, “PPO-DFK: A Privacy-Preserving Optimization of Distributed Fractional Knapsack with Application in Secure Footballer Configurations,” IEEE Syst J, vol. 15, no. 1, pp. 759–770, 2021, doi: 10.1109/JSYST.2020.2991928.

X. Chen, “A Comparison of Greedy Algorithm and Dynamic Programming Algorithm,” SHS Web of Conferences, vol. 144, p. 03009, 2022, doi: 10.1051/shsconf/202214403009.

U. Pferschy, G. Nicosia, and A. Pacifici, “A Stackelberg Knapsack Game with Weight Control,” Theor Comput Sci, 2019, doi: 10.1016/j.tcs.2019.10.007.

L. F. Plata-González, I. Amaya, J. C. Ortiz-Bayliss, S. E. Conant-Pablos, H. Terashima-Marín, and C. A. Coello Coello, “Evolutionary-based tailoring of synthetic instances for the Knapsack problem,” Appl Intell 52, vol. 23, no. 23, pp. 12711–12728, 2019, doi: 10.1007/s00500-019-03822-w.

P. S. Juwita, E. Susanto, and J. Halomoan, “Perancangan Dan Implementasi Manajemen Daya Listrik Menggunakan Algoritma Greedy Untuk Otomatisasi Rumah,” TEKTRIKA - Jurnal Penelitian dan Pengembangan Telekomunikasi, Kendali, Komputer, Elektrik, dan Elektronika, vol. 2, no. 2, pp. 19–25, 2018, doi: 10.25124/tektrika.v2i2.1677.

V. Cacchiani, M. Iori, A. Locatelli, and S. Martello, “Knapsack problems - An Overview of Recent Advances. Part II : Multiple , Multidimensional , and Quadratic Knapsack Problems,” Elsevier, pp. 1–36, 2022.

S. Kovalev, “Approximation issues of fractional knapsack with penalties: a note,” 4or, vol. 20, no. 2, pp. 209–216, 2022, doi: 10.1007/s10288-021-00474-1.

P. A. V Pande, “A New Approach to S olve Knapsack Problem,” International Journal of Information and Computing Science, vol. 6, no. 1, pp. 1–8, 2019.

M. Assi and R. A. Haraty, “A Survey of the Knapsack Problem,” ACIT 2018 - 19th International Arab Conference on Information Technology, pp. 1–6, 2019, doi: 10.1109/ACIT.2018.8672677.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Strategi Maximum Profit Algoritma Greedy dalam Kecerdasan Buatan Penentu Aktivitas Fisik pada Mobile Exergame

Dimensions Badge
Article History
Submitted: 2023-05-24
Published: 2023-05-30
Abstract View: 441 times
PDF Download: 429 times
Issue
Section
Articles