2024 Presidential Election Sentiment Analysis in News Media Using Support Vector Machine
Abstract
The 2024 presidential election is an event for all Indonesian people to determine their best leader. The presidential and vice presidential candidates are also competing to give their best efforts so that they can be elected as President and Vice President. The news media also provide news related to the 2024 presidential election with various titles that can interest their readers. Not infrequently the titles raised contain words that have sentiments, both positive and negative. In order to facilitate the analysis of the sentiments of these news titles, it is necessary to build a system that can detect the sentiments of these titles. In this study, we built a sentiment analysis system using the Support Vector Machine (SVM) method on news headline data obtained from online news media to detect whether news headlines contain positive or negative sentiments. For feature exctraction we compare the effect of FastText word embedding with TF-IDF for feature extraction. In the SVM method, several experiments were carried out on the attributes of C, kernel, gamma, and the ratio of the test data. The results obtained are a FastText can outperform TF-IDF for feature extraction. Also, combination of Kernel, C, and gamma values that give the best accuracy score of rbf, 1, and auto respectively at a test data ratio of 90:10, with an accuracy score of 99%.
Downloads
References
I. Kurniawan and A. Susanto, “Implementasi Metode K-Means dan Naïve Bayes Classifier untuk Analisis Sentimen Pemilihan Presiden (Pilpres) 2019,” Eksplora Informatika, vol. 9, no. 1, pp. 1–10, Sep. 2019, doi: 10.30864/eksplora.v9i1.237.
A. F. Sabily, P. P. Adikara, and M. A. Fauzi, “Analisis Sentimen Pemilihan Presiden 2019 pada Twitter menggunakan Metode Maximum Entropy,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer , vol. 3, pp. 4204–4209, May 2019.
M. M. Ismail and K. M. Lhaksamana, “Sentimen Analisis Pada Media Online Mengenai Pemilihan Presiden 2019 Dengan Menggunakan Metode Naive Bayes,” e-Proceeding of Engineering, vol. 6, pp. 9997–10004, Aug. 2019.
R. A. A. Malik and Y. Sibaroni, “Multi-aspect Sentiment Analysis of Tiktok Application Usage Using FasText Feature Expansion and CNN Method,” Journal of Computer System and Informatics (JoSYC), vol. 3, no. 4, pp. 277–285, Sep. 2022, doi: 10.47065/josyc.v3i4.2033.
S. Kurniawan, W. Gata, D. A. Puspitawati, N. -, M. Tabrani, and K. Novel, “Perbandingan Metode Klasifikasi Analisis Sentimen Tokoh Politik Pada Komentar Media Berita Online,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 3, no. 2, pp. 176–183, Aug. 2019, doi: 10.29207/resti.v3i2.935.
D. T. Lukmana, S. Subanti, and Y. Susanti, “ANALISIS SENTIMEN TERHADAP CALON PRESIDEN 2019 DENGAN SUPPORT VECTOR MACHINE DI TWITTER,” SEMINAR NASIONAL PENELITIAN PENDIDIKAN MATEMATIKA (SNP2M) , pp. 154–160, 2019.
A. G. Soenarya and K. M. Lhaksmana, “Sentimen Analisis Politik Berita Media OnlineDalam Pemilihan Presiden 2019 Menggunakan Metode Support Vector Machine,” e-Proceeding of Engineering, vol. 6, no. 2, pp. 10005–10012, Aug. 2019.
O. Z. A. Tane and K. M. Lhaksmana, “Analisis Sentimen Pada Twitter Tentang Calon Presiden 2019 Menggunakan Metode Svm (Support Vector Machine).,” eProceedings of Engineering, vol. 6, no. 2, pp. 9716–9725, Aug. 2019.
R. H. Muhammadi, T. G. Laksana, and A. B. Arifa, “Combination of Support Vector Machine and Lexicon-Based Algorithm in Twitter Sentiment Analysis,” Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika, vol. 8, no. 1, pp. 59–71, Mar. 2022, doi: 10.23917/khif.v8i1.15213.
T. H. Jaya Hidayat, Y. Ruldeviyani, A. R. Aditama, G. R. Madya, A. W. Nugraha, and M. W. Adisaputra, “Sentiment analysis of twitter data related to Rinca Island development using Doc2Vec and SVM and logistic regression as classifier,” Procedia Comput Sci, vol. 197, pp. 660–667, 2022, doi: 10.1016/j.procs.2021.12.187.
I. Santos, N. Nedjah, and L. de Macedo Mourelle, “Sentiment analysis using convolutional neural network with fastText embeddings,” in 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Nov. 2017, pp. 1–5. doi: 10.1109/LA-CCI.2017.8285683.
P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching Word Vectors with Subword Information,” Trans Assoc Comput Linguist, vol. 5, pp. 135–146, Dec. 2017, doi: 10.1162/tacl_a_00051.
M. Goudjil, M. Koudil, M. Bedda, and N. Ghoggali, “A Novel Active Learning Method Using SVM for Text Classification,” International Journal of Automation and Computing, vol. 15, no. 3, pp. 290–298, Jun. 2018, doi: 10.1007/s11633-015-0912-z.
M. Sheykhmousa, M. Mahdianpari, H. Ghanbari, F. Mohammadimanesh, P. Ghamisi, and S. Homayouni, “Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 13, pp. 6308–6325, 2020, doi: 10.1109/JSTARS.2020.3026724.
“RBF SVM parameters.” https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html#sphx-glr-auto-examples-svm-plot-rbf-parameters-py (accessed Jan. 31, 2023).
A. A. Aldino, A. Saputra, A. Nurkholis, and S. Setiawansyah, “Application of Support Vector Machine (SVM) Algorithm in Classification of Low-Cape Communities in Lampung Timur,” Building of Informatics, Technology and Science (BITS), vol. 3, no. 3, pp. 325–330, Dec. 2021, doi: 10.47065/bits.v3i3.1041.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel 2024 Presidential Election Sentiment Analysis in News Media Using Support Vector Machine
Pages: 397-404
Copyright (c) 2023 Bayu Muhammad Iqbal, Kemas Muslim Lhaksmana, Erwin Budi Setiawan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).