Prediksi Penyebaran Virus COVID-19 Dari Hasil PCR Menggunakan Metode Naïve Bayes


  • Hetty Rohayani * Mail Universitas Muhammadiyah Jambi, Jambi, Indonesia
  • Sitti Nur Alam Universitas Yapis Papua, Jayapura, Indonesia
  • Muhammad Fauzi Universitas Muhammadiyah Jambi, Jambi, Indonesia
  • Rico Rico Universitas Adiwangsa Jambi, Jambi, Indonesia
  • (*) Corresponding Author
Keywords: Prediction; Data Mining; Covid-19; Naive Bayes Algorithm; Rapidminer

Abstract

The Covid-19 pandemic in 2020 that occurred in Indonesia is a complex health problem and requires fast handling and collaborative solutions from various disciplines. Covid-19 patients who receive treatment in hospitals have different conditions and severity. This affects the treatment actions that will be carried out by medical officers. The large number of patients and the lack of medical personnel have resulted in the need for technological support to help classify patient status based on their condition so that treatment is concentrated on patients who are very critical and require rapid treatment. The number of employees at the Jambi District Attorney's Office were exposed to the Covid-19 virus in particular, and it is necessary to predict PCR results. This study applies a prediction technique from the data mining discipline section to classify the status of employees at the Jambi District Attorney's Office who are confirmed to be Covid-19. Classifiers using the Naive Bayes method were applied to build a model based on a dataset of patients infected with Covid-19. The Covid-19 PCR result dataset was obtained from the Jambi District Attorney and was applied using RapidMiner. The model built can predict the confirmed status of Covid-19 based on age, gender, health condition, and vaccinations. The results of this study indicate that the classification of the Naive Bayes method has a high level of accuracy in classifying the confirmed status of Covid-19, namely 97%.

Downloads

Download data is not yet available.

References

D. Pramana and M. Mustakim, “Prediksi Status Penanganan Pasien Covid-19 dengan Algoritma Naïve Bayes Classifier di Provinsi Riau,” J. Sist. Komput. dan Inform., vol. 3, no. 2, pp. 202–208, 2021.

D. Susanna, “When will the COVID-19 pandemic in indonesia end?,” Natl. Public Heal. J. (Jurnal Kesehat. Masy. Nas. ), vol. 15, no. 4, pp. 160–162, 2020.

Y. Indrianingrum and A. Wiranta, “Correlation of Factors Causing the Death of COVID-19 Patients and Enforcement of Regulations in Handling COVID-19 in the City of Bogor,” J. Bina Praja, vol. 13, no. 3, pp. 471–484, 2021.

Y. C. Wu, C. S. Chen, and Y. J. Chan, “The outbreak of COVID-19: An overview,” J. Chinese Med. Assoc., vol. 83, no. 3, pp. 217–220, 2020.

T. Singhal, “A Review of Coronavirus Disease-2019 (COVID-19),” Indian J. Pediatr., vol. 87, no. 4, pp. 281–286, 2020.

F. A. Nugroho, A. F. Solikin, M. D. Anggraini, and K. Kusrini, “Sistem Pakar Diagnosa Virus Corona Dengan Metode Naïve Bayes,” J. Teknol. Inf. dan Komun., vol. 9, no. 1, p. 81, 2021.

I. Harifal and L. D. Lestari, “Optimasi Naive Bayes dengan PSO untuk Prediksi Kebutuhan ICU Pasien Covid-19 Naive Bayes Optimization with PSO for Predicting ICU Needs for,” J. Sist. Informasi, Sist., vol. 11, no. September, pp. 724–734, 2022.

A. Saleh, “Implementasi Metode Klasifikasi Naïve Bayes Dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga,” J. Informatics, Inf. Syst. Softw. Eng. Appl., vol. 1, no. 2, pp. 73–81, 2019.

F. Harahap, N. E. Saragih, E. T. Siregar, and H. Sariangsah, “Penerapan Data Mining Dengan Algoritma Naive Bayes Classifier Dalam Memprediksi Pembelian Cat,” J. Ilm. Inform., vol. 09, no. 01, pp. 19–23, 2021.

H. Rohayani and M. C. Umam, “Prediksi Penentuan Program Studi Berdasarkan Nilai Siswa dengan Algoritma Backpropagation,” J. Inf. Syst. Res., vol. 3, no. 4, pp. 651–657, 2022.

Á. H. de Mendonça, A. E. Iribarne, and A. Yurkina, Data mining for the masses, vol. 8, no. 16. 2017.

S. Nagabhushana, Data Warehousing, OLAP and Data Mining. New Age International Publisher, 2013.

H. Rohayani, H. L. H. S. Warnars, T. Mauritsius, and E. Abdurrachman, “Wind speed forecasting in big data and machine learning: from presents, opportunities and future trends,” Commonications Math. Biol. Neurosci. J., vol. 3, no. 1, pp. 1–16, 2021.

N. H. Son, “Introduction to Rough sets and Data mining.”

M. G. Feshki and O. S. Shijani, “Improving the heart disease diagnosis by evolutionary algorithm of PSO and Feed Forward Neural Network,” 2016 Artif. Intell. Robot. IRANOPEN 2016, pp. 48–53, 2016.

Y. Huang and L. Li, “Naive Bayes classification algorithm based on small sample set,” CCIS2011 - Proc. 2011 IEEE Int. Conf. Cloud Comput. Intell. Syst., no. 2, pp. 34–39, 2011.

S. Rahayu and A. S. RMS, “Penerapan Metode Naive Bayes Dalam Pemilihan Kualitas Jenis Rumput Taman CV. Rumput Kita Landscape,” J. Teknol. Inf. dan Komun., vol. 9, no. 2, pp. 162–171, 2018.

K. Vembandasamy, R. Sasipriya, and E. Deepa, “Heart Diseases Detection Using Naive Bayes Algorithm,” Int. J. Innov. Sci. Eng. Technol., vol. 2, no. 9, pp. 441–444, 2015.

Heliyanti Susana, “Penerapan Model Klasifikasi Metode Naive Bayes Terhadap Penggunaan Akses Internet,” J. Ris. Sist. Inf. dan Teknol. Inf., vol. 4, no. 1, pp. 1–8, 2022.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Prediksi Penyebaran Virus COVID-19 Dari Hasil PCR Menggunakan Metode Naïve Bayes

Dimensions Badge
Article History
Submitted: 2022-11-23
Published: 2022-12-05
Abstract View: 227 times
PDF Download: 236 times
Section
Articles