Penerapan Data Mining Untuk Mengukur Kepuasan Mahasiswa Terhadap Pembelajaran dengan Menggunakan Algoritma Naïve Bayes
Abstract
Education is very important for life, with education can help in improving Human Resources (HR). Human Resources (HR) in universities are students. Increased competence in students carried out in higher education is carried out by learning. The process carried out in learning is very influential on the results obtained from learning both competencies and abilities possessed by students. Based on this, it is necessary to improve learning in higher education in order to support good results. Measuring the level of student satisfaction with learning can measure the extent to which the learning process has been carried out. The process of measuring the level of student satisfaction with learning is done first by collecting data. After collecting data, the data processing process is carried out to get the expected results. Errors in the data processing process, the results obtained are also not in accordance with the objectives carried out. Therefore, to solve the problem it is necessary to do it with the right process by using a separate method or technique where the method is data mining. Data mining is a method or technique used for data processing. The data processing process carried out in data mining is carried out on large data. The Naïve Bayes algorithm is an algorithm that is included in the classification of data mining techniques. Where the process in the nave Bayes algorithm is very dependent on the grouping process carried out on each attribute and also the target class of each object. The results of the study show that the probability value of PUAS is 0.034108116 and the probability value of NOT SATISFIED is 0. This indicates that the result of decision making is SATISFIED.
Downloads
References
B. S. Pranata and D. P. Utomo, “Penerapan Data Mining Algoritma FP-Growth Untuk Persediaan Sparepart Pada Bengkel Motor (Study Kasus Bengkel Sinar Service),” Bull. Inf. Technol., vol. 1, no. 2, pp. 83–91, 2020.
U. R. Amanda and D. P. Utomo, “Penerapan Data Mining Algoritma Hash Based Pada Data Pemesanan Buah Impor Cv. Green Uni Fruit,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 5, no. 1, 2021.
D. P. Utomo, P. Sirait, and R. Yunis, “Reduksi Atribut Pada Dataset Penyakit Jantung dan Klasifikasi Menggunakan Algoritma C5. 0,” J. MEDIA Inform. BUDIDARMA, vol. 4, no. 4, pp. 994–1006, 2020.
A. Yuliana and D. B. Pratomo, “Algoritma Decision Tree (C4.5) Untuk Memprediksi Kepuasan Mahasiswa Terhadap Kinerja Dosen Politeknik Tedc Bandung,” in Seminar Nasional Inovasi Teknologi 2017, 2017, pp. 377–384.
M. U. Albab and D. Hidayatullah, “Penerapan Algoritma Apriori pada Sistem Informasi Inventori Toko,” J. MEDIA Inform. BUDIDARMA, vol. 6, no. 3, pp. 1321–1328, 2022, doi: 10.30865/mib.v6i3.4160.
Muhammad Fatchan, M. Ir. Nanang Tedi K., Alfiyan, and Kurniawan, “Perbandingan Dalam Memprediksi Penyakit Liver Menggunakan Algoritma Naïve Bayes Dan K -Nearest Neighbor,” J. Pelita Teknol., vol. 16, no. 1, pp. 15–21, 2021.
I. Kamila, U. Khairunnisa, and M. Mustakim, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 5, no. 1, p. 119, 2019, doi: 10.24014/rmsi.v5i1.7381.
R. A. Farissa, R. Mayasari, and Y. Umaidah, “Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokkan Data Obat dengan Silhouette Coefficient di Puskesmas Karangsambung,” J. Appl. Informatics Comput., vol. 5, no. 2, pp. 109–116, 2021, doi: 10.30871/jaic.v5i1.3237.
H. D. Wijaya and S. Dwiasnati, “Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat,” J. Inform., vol. 7, no. 1, pp. 1–7, 2020, doi: 10.31311/ji.v7i1.6203.
N. Nurajijah, D. A. Ningtyas, and M. Wahyudi, “Klasifikasi Siswa Smk Berpotensi Putus Sekolah Menggunakan Algoritma Decision Tree, Support Vector Machine Dan Naive Bayes,” J. Khatulistiwa Inform., vol. 7, no. 2, pp. 85–90, 2019, doi: 10.31294/jki.v7i2.6839.
A. Natuzzuhriyyah and N. Nafisah, “Klasifikasi Tingkat Kepuasan Mahasiswa Terhadap Pembelajaran Secara Daring Menggunakan Algoritma Naïve Bayes,” Techno Xplore J. Ilmu Komput. dan Teknol. Inf., vol. 6, no. 2, pp. 61–67, 2021, doi: 10.36805/technoxplore.v6i2.1377.
A. M. Siregar and M. A. Rofik, “MENGUKUR TINGKAT KEPUASAN MAHASISWA DALAM PEMBELAJARAN DENGAN NAÏVE BAYES,” in Konferensi Nasional Penelitian dan Pengabdian (KNPP) Ke-1, 2021, pp. 1–19.
R. Hendra Tinambunan, J. Titaley, and C. E. Mongi, “Klasifikasi Naive Bayes Dalam Memprediksi Tingkat Program Studi Matematika Fmipa Universitas Sam Ratulangi Manado,” Pros. Semin. Nas. Sains Dan Terap. Vi, no. April, pp. 141–149, 2022.
Farmawati and Narti, “Perbandingan Algoritma C4.5 dan Naive Bayes dalam Klasifikasi Tingkat Kepuasan Mahasiswa Terhadap Pembelajaran Daring,” JTIM J. Teknol. Inf. dan Multimed., vol. 4, no. 1, pp. 1–12, 2022.
B. Efori, Data Mining Untuk Perguruan Tinggi. Yogyakarta: Deepublish, 2020.
D. Nofriansyah and G. W. Nurcahyo, Algoritma Data Mining Dan Pengujiannya. Yogyakarta: Deepublish, 2017.
A. Lestari, E. Mariati, and W. Widiatry, “Model Klasifikasi Kepuasan Mahasiswa Teknik Terhadap Sarana Pembelajaran Menggunakan Data Mining,” J. Teknol. Inf. J. Keilmuan dan Apl. Bid. Tek. Inform., vol. 14, no. 2, pp. 112–118, 2020, doi: 10.47111/jti.v14i2.1222.
Ardiyansyah, P. A. Rahayuningsih, and R. Maulana, “Analisis Perbandingan Algoritma Klasifikasi Data Mining Untuk Dataset Blogger Dengan Rapid Miner,” J. Khatulistiwa Inform., vol. VI, no. 1, pp. 20–28, 2018.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Data Mining Untuk Mengukur Kepuasan Mahasiswa Terhadap Pembelajaran dengan Menggunakan Algoritma Naïve Bayes
Pages: 39-44
Copyright (c) 2022 Agung Triayudi, Gatot Soepriyono

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).