Recommender System with User-Based and Item-Based Collaborative Filtering on Twitter using K-Nearest Neighbors Classification


  • Muhammad Shiba Kabul Telkom University, Bandung, Indonesia
  • Erwin Budi Setiawan * Mail Telkom University, Bandung, Indonesia
  • (*) Corresponding Author
Keywords: Recommender Systemm; User-Based; Item-Based; K-Nearest Neighbors

Abstract

Netflix is one of the most widely used applications for watching movies online. There are various movie titles that can be watched by users, so a recommendation system is needed to help users who feel confused in choosing movie titles. Twitter is a social media used to express ideas, thoughts, and feelings. Not a few Twitter users who conduct movie discussions, with the movie discussion can be converted into a rating that can be used in the recommendation system. Collaborative Filtering is one of the methods of the recommendation system, by recommending based on the similarity between users (user-based) and based on items that have similarities with user-selected items (item-based). In this research, the Collaborative Filtering method is combined with K-Nearest Neighbors classification which obtains an RMSE value for user-based 1.8244 and item-based 0.5449. K-Nearest Neighbors gets 91.22% precision and 91.07% recall for user-based, while item-based gets 89.44% precision and 91.22% recall with the optimal K as a parameter is 3.

Downloads

Download data is not yet available.

References

S. Postmus, “Recommender system techniques applied to Netflix movie data,” no. c, pp. 16–18, 2018.

Sarosa Castrena Abadi, M. A. Hidayat, and P. T. Asmoro, “Sistem Rekomendasi Film Berbasis Jejaring Sosial (Twitter) Menggunakan Ibm Bluemix,” J. Teknol. Inf. Univ. Lambung Mangkurat, vol. 5, no. 1, pp. 31–38, 2020, doi: 10.20527/jtiulm.v5i1.45.

F. Rahutomo, P. Y. Saputra, and M. A. Fidyawan, “Implementasi Twitter Sentiment Analysis Untuk Review Film Menggunakan Algoritma Support Vector Machine,” J. Inform. Polinema, vol. 4, no. 2, p. 93, 2018, doi: 10.33795/jip.v4i2.152.

K. R. Sari, W. Suharso, and Y. Azhar, “Pembuatan Sistem Rekomendasi Film dengan Menggunakan Metode Item Based Collaborative Filtering pada Apache Mahout,” J. Repos., vol. 2, no. 6, p. 767, 2020, doi: 10.22219/repositor.v2i6.936.

D. Valcarce, A. Landin, J. Parapar, and Á. Barreiro, “Collaborative filtering embeddings for memory-based recommender systems,” Eng. Appl. Artif. Intell., vol. 85, no. June 2021, pp. 347–356, 2019, doi: 10.1016/j.engappai.2019.06.020.

T. Anwar, V. Uma, M. I. Hussain, and M. Pantula, “Collaborative filtering and kNN based recommendation to overcome cold start and sparsity issues: A comparative analysis,” Multimed. Tools Appl., no. March, 2022, doi: 10.1007/s11042-021-11883-z.

P. Mudgil, S. Gautam, U. Chhabra, M. Jadaun, P. Jain, and V. Singh, “Analysing Huge Data Collection And Comparing Through Algorithms: KNN, Naive And Collaborative Filtering and Hybrid,” Int. J. Sci. Technol. Res., vol. 8, no. 7, pp. 220–224, 2019.

D. Wang, Y. Yih, and M. Ventresca, “Improving neighbor-based collaborative filtering by using a hybrid similarity measurement,” Expert Syst. Appl., vol. 160, p. 113651, 2020, doi: 10.1016/j.eswa.2020.113651.

Y. F. Rachman, R. Saptono, and Winarno, “Comparison of C4.5 Algorithm and K-Nearest Neighbors on the Classification of Multiple Intelligence Test Results for Recommended Student Lectures,” J. Ilm. Teknol. dan Inf., vol. 7, no. 2, pp. 108–114, 2018.

A. E. Wijaya and D. Alfian, “Sistem Rekomendasi Laptop Menggunakan Collaborative Filtering Dan Content-Based Filtering,” J. Comput. Bisnis, vol. 12, no. 1, pp. 11–27, 2018.

R. M. A. Rojasi Fadilla, Roni Andarsyah, “Data Analytics : Peningkatan Performa Algoritmma Rekomendasi Collaborative Filtering Menunakan K-Means Clustering.” 2020. page 8

S. Rajarajeswari, S. Naik, S. Srikant, M. K. Sai Prakash, and P. Uday, “Movie Recommendation System,” Adv. Intell. Syst. Comput., vol. 882, no. 11, pp. 329–340, 2019, doi: 10.1007/978-981-13-5953-8_28.

A. Tripathi and A. K. Sharma, “Recommending Restaurants: A Collaborative Filtering Approach,” ICRITO 2020 - IEEE 8th Int. Conf. Reliab. Infocom Technol. Optim. (Trends Futur. Dir., pp. 1165–1169, 2020, doi: 10.1109/ICRITO48877.2020.9197946.

KPM, R. A. Ramadhani, and e D. LiceFrense, “K-Nears Neigbours Risa Helilintar , Risky Aswi Ramadhani Siti Rochana,” Python “Belajar Pemrograman Python Dasar,” vol. 84, no. December, pp. 487–492, 2017, [Online]. Available: http://www.ask-jansen.com/wp-content/uploads/2014/04/Kontroversi-Kalori-ebook.pdf%0Ahttp://ir.obihiro.ac.jp/dspace/handle/10322/3933. page 36

L. Al Hassanieh, C. A. Jaoudeh, J. B. Abdo, and J. Demerjian, “Similarity measures for collaborative filtering recommender systems,” 2018 IEEE Middle East North Africa Commun. Conf. MENACOMM 2018, no. April, pp. 1–5, 2018, doi: 10.1109/MENACOMM.2018.8371003.

S. D. Nurhayati and W. Widayani, “Sistem Rekomendasi Wisata Kuliner di Yogyakarta dengan Metode Item-Based Collaborative Filtering,” vol. 1, no. 2, pp. 10–18, 2021.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Recommender System with User-Based and Item-Based Collaborative Filtering on Twitter using K-Nearest Neighbors Classification

Dimensions Badge
Article History
Submitted: 2022-08-26
Published: 2022-09-05
Abstract View: 621 times
PDF Download: 440 times
Section
Articles