Pendeteksian Penyakit Mulut dan Kuku Pada Sapi dengan Menerapkan Metode Naïve Bayes
Abstract
The outbreak of the issue in 2022 related to foot and mouth disease which is a viral outbreak experienced in ruminant livestock. This virus outbreak is a virus that is easily transmitted and attacks all types of animals that have even or split nails. The spread of this epidemic is very troubling for the breeder, one of the cattle or cattle breeders. Where as a result of this outbreak, many cattle breeders suffered enormous losses both in terms of finances and the time of raising their livestock. The reason is that many cattle breeders, especially in rural areas, do not know how to treat this disease early and require a large amount of money if the cattle are examined by a veterinarian. Therefore, to make it easier for cattle breeders, we need a way to find out the causes and conditions of cows suffering from mouth and hoof disease based on the symptoms experienced by cows, one of which is by using an expert system. Naive Bayes. The Naïve Bayes method is a probability method by predicting future opportunities based on past experience. As a result, the owner of the cow should treat the cow so as to avoid death and infection to other animals.
Downloads
References
M. A. Gelolodo, “Peranan Pendekatan Molekular dalam Program Eradikasi Penyakit Mulut dan Kuku,” J. Kaji. Vet., vol. 5, no. 2, hal. 21–42, 2017.
S. R. Budi, D. K. L, S. Hanifah, F. L. K, R. S. D. Daulay, dan A. Suganda, “SURVEILANS PENYAKIT MULUT DAN KUKU PUSAT VETERINER FARMA (PUSVETMA) TAHUN 2018,” in Prosiding Seminar Nasional Agroinovasi Spesifik Lokasi Untuk Ketahanan Pangan Pada Era Masyarakat Ekonomi ASEAN, 2019, hal. 118–123.
D. Aldo, “Sistem Pakar Diagnosis Hama Dan Penyakit Bawang Merah Menggunakan Metode Dempster Shafer,” KOMPUTIKA J. Sist. Komput., vol. 9, no. 2, 2020.
D. P. Delima dan R. T. Prasetio, “SISTEM PAKAR DIAGNOSA KOMPLIKASI OBESITAS PADA REMAJA MENGGUNAKAN METODE CERTAINTY FACTOR,” in eProsiding Sistem Informasi (POTENSI), 2021, hal. 51–60.
M. R. Handoko dan Neneng, “SISTEM PAKAR DIAGNOSA PENYAKIT SELAMA KEHAMILAN MENGGUNAKAN METODE NAIVE BAYES BERBASIS WEB,” J. Teknol. dan Sist. Inf., vol. 2, no. 1, hal. 50–58, 2021.
S. Butsianto, “APLIKASI SISTEM PAKAR DIAGNOSA PENYAKIT SAPI MENGGUNAKAN METODE TEOREMA BAYES BERBASIS WEB,” J. SIGMA Inf. Technol., vol. 8, no. 1, hal. 60–69, 2018.
W. D. Prasetyo dan R. Wahyudi, “SISTEM PAKAR DIAGNOSIS PENYAKIT TERNAK SAPI MENGGUNAKAN METODE FORWARD CHAINING BERBASIS WEBSITE RESPONSIF,” J. Teknol. dan Terap. Bisnis, vol. 2, no. 1, hal. 13–21, 2019.
Yuliana, Paradise, dan Kusrini, “Sistem Pakar Diagnosa Penyakit Ispa Menggunakan Metode Naive Bayes Classifier Berbasis Web,” J. CSRID, vol. 10, no. 3, hal. 127–138, 2018.
I. Gunawan dan Y. Fernando, “SISTEM PAKAR DIAGNOSA PENYAKIT KULIT PADA KUCING MENGGUNAKAN METODE NAIVE BAYES BERBASIS WEB,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 2, no. 2, hal. 239–247, 2021.
A. S. R. Sinaga dan D. Simanjuntak, “SISTEM PAKAR DETEKSI GIZI BURUK BALITA DENGAN METODE NAÏVE BAYES CLASSIFIER,” J. Inkofar, vol. 2, no. 1, hal. 54–60, 2019.
W. H. Winarsih, “Penyakit Ternak yang Perlu Diwaspadai Terkait Keamanan Pangan,” J. Litbang Kebijak., vol. 12, no. 2, hal. 208–221, 2018.
R. A. D. Yunas, A. Triayudi, dan I. D. Sholihati, “Implementasi Sistem Pakar untuk Mendeteksi Virus Covid-19 dengan Perbandingan Metode Naïve Bayes dan Certainty Factor,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 5, no. 3, hal. 338–345, 2021.
F. A. Nugroho, A. F. Solikin, M. D. Anggraini, dan Kusrini, “Sistem Pakar Diagnosa Virus Corona Dengan Metode Naïve Bayes,” TIKomSiN J. Teknol. Inf. dan Komun. Sinar Nusant., vol. 9, no. 2, hal. 81–88, 2021.
M. F. Andriansyah, D. Yusup, dan A. Voutama, “SISTEM PAKAR DETEKSI DINI COVID-19 MENGGUNAKAN METODE NAÏVE BAYES BERBASIS WEBSITE,” J. Inf. Technol. Comput. Sci., vol. 4, no. 2, hal. 446–455, 2021.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Pendeteksian Penyakit Mulut dan Kuku Pada Sapi dengan Menerapkan Metode Naïve Bayes
Pages: 264-268
Copyright (c) 2022 Alexius Ulan Bani, Asruddin

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).