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Abstract−Anemia is a prevalent and potentially serious medical condition characterized by a deficiency in the number or 

quality of red blood cells. Accurate classification of anemia types is crucial for ensuring appropriate treatment, as different 

types of anemia require distinct therapeutic approaches. However, the classification of anemia presents specific challenges 

due to the complexity of the condition, the variability in CBC data, and the need to differentiate between multiple anemia 
types that may present with overlapping symptoms. In this study, we explore the application of hybrid machine learning 

models to classify anemia types using Complete Blood Count (CBC) data. We evaluated the performance of various models, 

including DecisionTree, RandomForest, XGBoost, LightGBM, CatBoost, and ensemble methods such as Stacking and 

Voting. The ensemble models, particularly Stacking and Voting, demonstrated superior performance with balanced accuracy 
reaching 0.9976 and F1 scores of 0.9964, significantly outperforming individual classifiers. These results underscore the 

efficacy of ensemble techniques in handling the complex and imbalanced datasets commonly encountered in medical 

diagnostics. Despite their high accuracy, we identified challenges related to model interpretability, computational demands, 

and data quality. The complexity and resource requirements of these models may limit their practical application in resource-
constrained environments. This study provides a comprehensive analysis of the trade-offs between model complexity, 

accuracy, and interpretability, offering valuable insights for the deployment of machine learning models in clinical settings. 

Our findings highlight the potential of hybrid models to improve anemia diagnosis, suggesting their integration into 

healthcare systems could enhance diagnostic accuracy and patient outcomes. Future work will focus on expanding the 

dataset, refining model interpretability, and addressing ethical considerations in the use of AI in healthcare. 
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1. INTRODUCTION 

Anemia, a condition characterized by insufficient red blood cells or hemoglobin, is a pervasive health issue 

affecting millions globally [1]–[3]. It is particularly prevalent in developing countries where nutritional 

deficiencies, infections, and genetic disorders are more common [4]. Accurate and timely diagnosis of anemia is 

crucial, as it can lead to severe health consequences if left untreated, including chronic fatigue, heart problems, 

and complications during pregnancy. Traditionally, anemia diagnosis relies on the analysis of Complete Blood 

Count (CBC) data, where hematologists manually interpret the parameters to classify the type and severity of 

anemia. However, this manual approach is prone to human error and can be time-consuming, especially in 

resource-limited settings where healthcare professionals are often overburdened. In recent years, the integration 

of machine learning techniques in healthcare has shown promise in enhancing diagnostic accuracy and efficiency 

[5]. Machine learning models have been increasingly applied to medical datasets to automate and improve the 

diagnostic process, offering the potential to revolutionize how diseases like anemia are detected and managed 

[6]. Despite these advancements, the application of machine learning to anemia diagnosis remains 

underexplored, particularly in the context of developing robust and interpretable models that can be seamlessly 

integrated into clinical workflows [7]. 

The application of machine learning in healthcare has garnered significant attention over the past decade, 

with numerous studies demonstrating its potential in various diagnostic tasks [8]. For instance, Convolutional 

Neural Networks (CNNs) have been widely used for image-based diagnostics, such as detecting tumors in 

medical imaging. Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM) 

networks, have shown promise in analyzing time-series data, such as electrocardiograms (ECGs) and patient 

monitoring data [9]. Additionally, tree-based models like Random Forest and Gradient Boosting have been 

successful in handling tabular data, particularly in tasks requiring high interpretability and robustness against 

overfitting. In the context of anemia diagnosis, most existing studies have focused on traditional methods such as 

statistical analysis and rule-based systems [10]. These approaches, while effective, are limited by their reliance 

on predefined thresholds and their inability to adapt to the complex, nonlinear relationships present in CBC data 

[11]. Some recent studies have explored the use of machine learning for anemia diagnosis, but these efforts have 

typically been limited to single-model approaches, such as using RandomForest or SVM alone, without 

exploring the potential benefits of hybrid or ensemble models [12]. Furthermore, many of these studies have not 

adequately addressed the challenge of imbalanced datasets, where certain types of anemia are underrepresented, 

leading to biased models that may perform poorly in real-world scenarios. 

The need for accurate and automated anemia diagnosis tools is particularly urgent in low-resource 

settings, where the prevalence of anemia is high, and access to healthcare is limited [13]. In these regions, the 

ability to quickly and accurately diagnose anemia can have a significant impact on public health, enabling timely 

intervention and treatment [14]. Moreover, with the growing global burden of anemia, particularly among 
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women and children, there is an increasing demand for diagnostic tools that are not only accurate but also 

scalable and cost-effective [15]. Machine learning models, if properly developed and validated, have the 

potential to meet these needs, offering a viable solution to the challenges of anemia diagnosis in both high- and 

low-resource settings [16]. Current state-of-the-art approaches in machine learning for medical diagnostics often 

involve the use of advanced deep learning models, such as CNNs and RNNs, which have shown exceptional 

performance in image and sequence data analysis [17]. However, these models are often criticized for their lack 

of interpretability, which is a significant concern in healthcare applications where understanding the decision-

making process is crucial. In response to this challenge, there has been a growing interest in hybrid models that 

combine the strengths of multiple algorithms to improve both accuracy and interpretability. For instance, 

ensemble methods like Stacking and Boosting have been increasingly adopted in various diagnostic tasks, as 

they offer a way to leverage the complementary strengths of different models [18]. 

In the context of anemia diagnosis, however, the application of such hybrid models remains limited. 

While some studies have explored the use of individual machine learning models for classifying anemia, there is 

a noticeable gap in the literature regarding the integration of these models into a unified framework that can offer 

both high accuracy and interpretability [19]. Moreover, there is a lack of comprehensive studies that address the 

challenges of imbalanced data in anemia diagnosis, which is a critical factor in developing reliable models [15], 

[20], [21]. In addition, there has been considerable progress in the application of machine learning to various 

medical diagnostics, the field of anemia diagnosis has not seen the same level of advancement. Most existing 

studies focus on traditional statistical methods or single-model machine learning approaches, which are often 

limited by their inability to capture the complex relationships in CBC data. Additionally, the issue of imbalanced 

datasets, which is common in medical data, has not been adequately addressed in many of these studies, leading 

to models that may perform well in controlled environments but fail in real-world applications. This research 

aims to fill this gap by developing a hybrid model that not only improves accuracy but also addresses the 

challenge of data imbalance and ensures that the model is interpretable and applicable in clinical settings. The 

primary goal of this research is to develop a robust and interpretable machine learning model for the 

classification of anemia types using CBC data.  

The remainder of this article is structured as follows: The next section provides a detailed overview of the 

dataset and the preprocessing steps, including the handling of missing data, normalization, and the application of 

SMOTE to address data imbalance. This is followed by a description of the machine learning models used in the 

study, including the rationale for selecting each model and the implementation details. The experimental setup is 

then outlined, including the cross-validation procedure and the metrics used for model evaluation. The results 

section presents the performance of the models, with a focus on the hybrid model, and discusses the implications 

of these findings for clinical practice. Finally, the article concludes with a discussion of the limitations of the 

study, potential future research directions, and the broader impact of this work on the field of medical 

diagnostics. 

2. RESEARCH METHODOLOGY 

This section elaborates on the systematic methodology employed in developing and evaluating a hybrid machine 

learning model for anemia type classification using Complete Blood Count (CBC) data. The methodology 

comprises several integral stages, including dataset preparation, data preprocessing, imbalanced class handling, 

model development, cross-validation, and model evaluation, each underpinned by a rigorous mathematical 

framework to ensure the model's robustness and generalizability. 

2.1 Dataset Preparation 

In this study, the dataset consists of Complete Blood Count (CBC) data annotated with various types of anemia. 

The dataset can be downloaded from  [22]. The dataset is structured as a collection of hematological parameters, 

where each instance represents a patient’s CBC profile. Formally, let the dataset be denoted as (𝒟), consisting of 

( 𝑁 ) samples. Each sample (𝑿𝒊) is a vector in the feature space (𝒳), defined as presented in the equation 1. 

𝑋𝑖 = 𝑋𝑖1 𝑋𝑖2 … 𝑋𝑖𝑛
⊤,  for 𝑖 = 1,2, … , 𝑁 

(1) 

Where (𝑋𝑖𝑗) represents the ( 𝑗 )-th CBC parameter for the ( 𝑖 )-th patient. The corresponding label (𝑦𝑖) is 

a categorical variable representing the type of anemia diagnosed, belonging to the label space (𝒴) as presented 

in the equation 2. 

𝑦𝑖 ∈ 𝒴 = {1,2, … , 𝐶}, 
(2) 

Where ( 𝐶 ) is the number of distinct anemia types. The CBC parameters (𝑋𝑖𝑗) include crucial 

hematological indicators such as Hemoglobin (HGB), Platelet Count (PlT), White Blood Cell Count (WBC), 

Red Blood Cell Count (RBC), Mean Corpuscular Volume (MCV), Mean Corpuscular Hemoglobin (MCH), 

Mean Corpuscular Hemoglobin Concentration (MCHC), Platelet Distribution Width (PDW), and Procalcitonin 

(PCT). Each parameter (𝑋𝑖𝑗) is a continuous variable and may vary widely in range and scale across the dataset. 
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The objective of this study is to learn a mapping function (𝑓: 𝒳 → 𝒴), such that, for an unseen instance (𝑋𝑛𝑒𝑤 ∈
𝒳), the function ( 𝑓 ) accurately predicts the corresponding anemia type (𝑦̂ ∈ 𝒴). The function ( 𝑓 ) is 

approximated using machine learning models, which are trained on a subset of the data (𝒟𝓉𝓇𝒶𝒾𝓃 ⊂ 𝒟) and 

evaluated on a separate test set (𝒟𝓉ℯ𝓈𝓉 ⊂ 𝒟). 

2.2 Data Preprocessing 

Data preprocessing is a critical step that ensures the feature vectors (𝑋𝑖) are standardized and appropriately 

scaled, facilitating the training of robust machine learning models [23]. Given the heterogeneity of the CBC 

parameters (𝑋𝑖𝑗), where each parameter may span different numerical ranges and units, it is essential to 

normalize the data to a common scale. This study employs MinMax scaling, a linear transformation that maps 

each feature (𝑋𝑖𝑗) to a normalized range ([0,1]), thus preventing any single feature from disproportionately 

influencing the learning process. Mathematically, for each feature (𝑋𝑗) across all samples, the scaling 

transformation is defined as presented in the equation 3. 

𝑋𝑖𝑗
′ =

𝑋𝑖𝑗−min(𝑋𝑗)

max(𝑋𝑗)−min(𝑋𝑗)
,  for 𝑖 = 1,2, … , 𝑁,   

(3) 

Where (min(𝑋𝑗)) and (max(𝑋𝑗)) denote the minimum and maximum values of feature (𝑋𝑗) across the 

dataset. The resulting scaled dataset (𝑋′ = [𝑋1
′ , 𝑋2

′ , … , 𝑋𝑁
′ ]⊤) ensures that all features are within the range 

([0,1]), effectively standardizing the feature space (𝒳). Following normalization, the dataset (𝒟) is partitioned 

into training and testing subsets, (𝒟𝓉𝓇𝒶𝒾𝓃) and (𝒟𝓉ℯ𝓈𝓉), respectively. This partitioning is achieved using an 80-

20 split, where the training set (𝒟𝓉𝓇𝒶𝒾𝓃) consists of 80\% of the samples and is used to fit the machine learning 

models. The remaining 20% of the data, constituting (𝒟𝓉ℯ𝓈𝓉), is reserved for evaluating the generalization 

performance of the trained models. Formally, if (𝑁𝑡𝑟𝑎𝑖𝑛) and (𝑁𝑡𝑒𝑠𝑡) denote the number of samples in the 

training and testing sets, respectively, then 𝑁𝑡𝑟𝑎𝑖𝑛 = 0.8 × 𝑁,  𝑁𝑡𝑒𝑠𝑡 = 0.2 × 𝑁, where (𝑁𝑡𝑟𝑎𝑖𝑛 + 𝑁𝑡𝑒𝑠𝑡 = 𝑁). 

2.3 Handling Imbalanced Data 

A significant challenge in the context of medical datasets is the class imbalance problem, where certain anemia 

types may be underrepresented [24]. This imbalance can skew the learning process, causing models to favor the 

majority classes and underperform on the minority classes. To address this issue, this study employs the 

Synthetic Minority Over-sampling Technique (SMOTE), an advanced resampling technique designed to create 

synthetic instances for the minority classes. SMOTE operates by interpolating between existing samples of the 

minority class to generate new, synthetic samples. For a given minority class sample (𝒙𝒊) and one of its 

( 𝑘 ) −nearest neighbors (𝒙𝒋) in the feature space, a new synthetic sample (𝒙𝒏𝒆𝒘) is generated as 𝒙𝒏𝒆𝒘 = 𝒙𝒊 +

𝜆 ⋅ (𝒙𝒋 − 𝒙𝒊), where (𝜆 ∈ [0,1]) is a random scalar. The newly generated sample (𝒙𝒏𝒆𝒘) lies on the line segment 

joining (𝒙𝒊)𝑎𝑛𝑑(𝒙𝒋), thereby introducing variability while preserving the underlying structure of the minority 

class. The application of SMOTE results in a balanced training set (𝒟𝒷𝒶ℓ𝒶𝓃𝒸ℯ𝒹), where the class distribution is 

more uniform across all anemia types. Let (𝒴) denote the set of unique class labels, and let (𝑛𝑦) denote the 

number of samples in class ( 𝑦 ) within the training set. Post-SMOTE, the new number of samples (𝑛𝑦
′ ) in each 

class ( 𝑦 ) is approximately equal as 𝑛𝑦
′ ≈ max

𝑦∈𝒴
𝑛𝑦 ,  ∀𝑦 ∈ 𝒴, where (𝑛𝑦

′ ) is the adjusted class size after 

applying SMOTE. This balanced dataset (𝒟𝒷𝒶ℓ𝒶𝓃𝒸ℯ𝒹) is then used for training the machine learning models, 

ensuring that the models do not disproportionately favor any particular class. 

2.4 Proposed Hybrid Model and Evaluation 

The core objective of this study is to develop a sophisticated hybrid machine learning model capable of 

accurately classifying anemia types using CBC data. The proposed hybrid model leverages the 

StackingClassifier, a powerful ensemble technique that combines the predictions of multiple base models. The 

primary rationale behind using a stacking approach is to harness the strengths of various algorithms, thereby 

improving overall predictive performance by reducing bias and variance. In this approach, let the feature space 

be denoted as (𝑋 ∈ 𝒳), where (𝑋) is a vector representing an instance of CBC parameters, and let (𝒴) represent 

the label space corresponding to the different types of anemia. The goal is to approximate a function (𝑓: 𝒳 → 𝒴) 

such that (𝑓(𝑋)) accurately predicts the corresponding anemia type (𝑦 ∈ 𝒴). The hybrid model is constructed 

using a stacking framework where multiple base learners ({𝑓1, 𝑓2, … , 𝑓𝐾}) are trained independently on the 

training dataset (𝒟𝓉𝓇𝒶𝒾𝓃). The predictions from these base learners are then used as input features to a meta-

learner (𝑓𝑚𝑒𝑡𝑎), which produces the final prediction. Formally, for an input (𝑋), the final prediction (𝑦̂) of the 

hybrid model can be expressed as 𝑦̂ = 𝑓𝑠𝑡𝑎𝑐𝑘𝑒𝑑(𝑋) = 𝑓𝑚𝑒𝑡𝑎(𝑓1(𝑋), 𝑓2(𝑋), … , 𝑓𝐾(𝑋)), 𝑤ℎ𝑒𝑟𝑒(𝑓𝑚𝑒𝑡𝑎) is typically 

a simple model like Logistic Regression that operates on the output of the base learners to make the final 

classification decision. 

The effectiveness of the stacking ensemble heavily depends on the diversity and complementarity of the 

base models. In this study, the RandomForestClassifier (RFC) is employed as one of the base models. This 
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model is a robust ensemble method that constructs multiple decision trees using bootstrap aggregating (bagging) 

to reduce variance. The prediction of the Random Forest model for an instance (𝑋) is the majority vote across all 

trees, and it is mathematically represented as (𝑓𝑅𝐹(𝑋) =
1

𝑚
∑ 𝑇𝑖(𝑋))𝑚

𝑖=1 , where ( 𝑚 ) is the total number of 

decision trees. Another base model used in this study is the XGBClassifier (XGB), an advanced implementation 

of gradient boosting that sequentially builds an ensemble of weak learners, typically decision trees. Each 

subsequent tree attempts to correct the errors made by the previous trees. The model prediction is updated 

iteratively as  𝑓𝑋𝐺𝐵(𝑋) = ∑ η𝑖ℎ𝑖(𝑋)𝑇
𝑖=1 , where (ℎ𝑖(𝑋)) is the ( 𝑖 )-th weak learner, and (η𝑖) is the learning rate 

controlling the contribution of each learner. The final base model in the hybrid framework is the 

LGBMClassifier (LGB), a highly efficient gradient boosting framework that employs a leaf-wise tree growth 

strategy, as opposed to the depth-wise growth in traditional gradient boosting. This approach allows LightGBM 

to handle large datasets with high dimensionality efficiently. The model prediction can be expressed similarly to 

XGBoost, with optimizations specific to LightGBM's architecture. 

The meta-learner (𝑓𝑚𝑒𝑡𝑎) in the stacking ensemble plays a crucial role in synthesizing the outputs of the 

base models. Typically, the meta-learner is a simple model such as Logistic Regression, which is trained to 

identify patterns in the predictions made by the base models. Given the outputs (𝑓1(𝑋), 𝑓2(𝑋), … , 𝑓𝐾(𝑋)), the 

meta-learner is trained to minimize a loss function (𝐿(𝑦, 𝑦̂)), where (𝑦) is the true label and (𝑦̂) is the predicted 

label. The loss function can be represented as  𝐿(𝑦, 𝑦̂) = ∑ Loss(𝑦𝑖 , 𝑦𝑖̂)
𝑁
𝑖=1 , with (𝑦𝑖̂) being the output from the 

meta-learner and ( 𝑁 ) being the total number of instances in the training set. To ensure the robustness and 

generalizability of the hybrid model, Stratified K-Fold Cross-Validation is employed. In this method, the dataset 

is split into ( 𝑘 ) stratified folds. During each iteration, ( 𝑘 − 1 ) folds are used for training, while the remaining 

fold is used for validation. This process is repeated ( 𝑘 ) times, with each fold serving as the validation set once. 

Stratified sampling is crucial as it ensures that each fold is representative of the overall class distribution, 

particularly important for handling imbalanced datasets. The model's performance is evaluated using the 

accuracy metric, which is defined as Accuracy =
1

𝑘
∑

1

|𝒟𝓋𝒶ℓ
(𝒾)

|

𝑘
𝑖=1 ∑ 𝟙(𝑓(𝑋𝑗) = 𝑦𝑗)

|𝒟𝓋𝒶ℓ
(𝒾)

|

𝑗=1
. 

Here, (𝟙) is the indicator function that returns 1 if the prediction is correct and 0 otherwise, (𝒟𝓋𝒶ℓ
(𝒾)

) is the 

validation set for the ( 𝑖 )-th fold, and (|𝒟𝓋𝒶ℓ
(𝒾) |) denotes the number of instances in the validation set. The cross-

validated accuracy provides an unbiased estimate of the model's performance on unseen data. After cross-

validation, the model is trained on the entire training set (𝒟𝓉𝓇𝒶𝒾𝓃) and evaluated on the test set (𝒟𝓉ℯ𝓈𝓉). The 

performance is further assessed using a confusion matrix (𝐶), where each element (𝐶𝑖𝑗) represents the number of 

instances with the true label ( 𝑖 ) that were predicted as class ( 𝑗 ). The confusion matrix is a valuable tool for 

understanding the model’s classification accuracy for each class, highlighting specific areas of misclassification. 

In the final implementation phase, the hybrid model is trained on the balanced training set (𝒟𝒷𝒶ℓ𝒶𝓃𝒸ℯ𝒹), 

which has been adjusted using SMOTE to handle class imbalance. The model’s predictions are then compared 

against those of the individual base models to demonstrate the advantage of the stacking approach. To provide a 

more nuanced evaluation of the model's effectiveness, especially in the context of imbalanced classes, 

performance metrics such as precision, recall, and F1-score are computed. Precision and recall are defined as  

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 and Recall =

𝑇𝑃

𝑇𝑃+𝐹𝑁
, where ( 𝑇𝑃 ) is the number of true positives, ( 𝐹𝑃 ) is the number of 

false positives, and ( 𝐹𝑁 ) is the number of false negatives. The F1-score, which is the harmonic mean of 

precision and recall, is given by  𝐹1 = 2 ×
Precision×Recall

Precision+Recall
. These metrics provide a comprehensive evaluation of 

the model's performance, particularly in handling minority classes in an imbalanced dataset. 

3. RESULT AND DISCUSSION 

In this section, as presented in the figure 1, we present and discuss the results of our hybrid machine learning 

models applied to the classification of anemia types using CBC data. The performance metrics evaluated include 

Balanced Accuracy, Precision, Recall, and F1 Score, which are critical for understanding the efficacy of the 

models, particularly in the context of imbalanced data. 
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Figure 1. Anemia Classification Research Methodology 

The process began with data preprocessing, where the Complete Blood Count (CBC) data underwent 

several transformations, including handling missing values, normalization, and applying Synthetic Minority 

Over-sampling Technique (SMOTE) to address class imbalance. These steps were critical to ensure the quality 

and consistency of the input data. Following preprocessing, various machine learning models were developed 

and optimized. The models included DecisionTree, ExtraTree, RandomForest, XGBoost, LightGBM, CatBoost, 

and ensemble techniques such as Stacking and Voting. Each model was subjected to hyperparameter tuning to 

identify the optimal settings for performance enhancement. For instance, in the case of RandomForest, the 

maximum depth and the number of estimators were adjusted to balance model complexity and performance. 

The training phase involved splitting the dataset into training and testing subsets, where 80% of the data 

was used to train the models, and the remaining 20% was reserved for testing and validation. Cross-validation 

techniques were employed to ensure that the models generalized well to unseen data. The performance of each 

model was evaluated based on metrics such as Balanced Accuracy, Precision, Recall, and F1 Score. These 

metrics were chosen to provide a comprehensive understanding of the models' ability to classify the different 

types of anemia accurately. With the models trained and validated, the next step was to integrate the predictions 

from individual models into ensemble frameworks like Stacking and Voting as explained in the section 2.4. The 

Stacking model combined the predictions of multiple base models through a meta-learner, while the Voting 

model aggregated predictions via majority voting. These ensemble methods aimed to leverage the strengths of 

individual models to improve overall classification performance. 

3.1 Results 

As presented in the table 1, The DecisionTree classifier achieved a Balanced Accuracy of 0.9896, with a 

Precision of 0.9953, Recall of 0.9922, and an F1 Score of 0.9931. These results indicate that the DecisionTree 

model performs well, with high precision and recall, suggesting that it effectively captures the relationships 

between features and the target classes. The absence of hyperparameter tuning (Best Params: {}) further implies 

that the default settings are well-suited for this task, though there may still be room for optimization. The 

ExtraTree classifier, however, exhibited significantly lower performance, with a Balanced Accuracy of 0.5816, 

Precision of 0.7739, Recall of 0.7588, and an F1 Score of 0.7624. These results suggest that the ExtraTree model 

struggles to generalize in this context, likely due to its tendency to overfit on small subsets of the data. The 

model’s lower recall indicates that it fails to correctly classify a significant portion of the minority class samples, 

leading to an overall reduction in balanced accuracy. 

The RandomForest model, with hyperparameters optimized at a max depth of 10 and 200 estimators, 

achieved a Balanced Accuracy of 0.8643. It also reported high Precision (0.9855), Recall (0.9883), and F1 Score 

(0.9865). This performance is commendable, particularly given the model’s ability to balance the complexity of 

the trees (through max depth) with the ensemble’s diversity (via the number of estimators). The slight decrease 

in balanced accuracy compared to the DecisionTree model could be attributed to the constraints imposed by the 

tuned max depth, which may limit the model’s ability to capture more complex patterns. The ExtraTrees model 

performed similarly to the ExtraTree classifier, with a Balanced Accuracy of 0.5796, Precision of 0.8565, Recall 

of 0.8638, and an F1 Score of 0.8534. Despite higher precision and recall than the ExtraTree model, the overall 
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balanced accuracy remained low, suggesting that the model still faces challenges in generalizing across different 

classes. This outcome could be due to the random nature of the feature splits, which may lead to less stable 

predictions. 

The XGBoost model, optimized with a max depth of 3 and 100 estimators, delivered excellent 

performance, achieving a Balanced Accuracy of 0.9954, Precision of 0.9932, Recall of 0.9922, and an F1 Score 

of 0.9924. These results highlight XGBoost’s strength in handling imbalanced datasets, as the model effectively 

balances precision and recall while maintaining a high overall accuracy. The depth and number of estimators 

provide a balance between model complexity and computational efficiency, enabling XGBoost to generalize 

well across different classes. Similarly, the LightGBM model, with no depth limitation and 100 estimators, 

demonstrated strong performance, achieving a Balanced Accuracy of 0.9605, Precision of 0.9931, Recall of 

0.9922, and an F1 Score of 0.9920. LightGBM’s efficient handling of large datasets and high-dimensional data is 

evident in these results, making it a suitable choice for this classification task. However, its performance, while 

excellent, slightly lags behind XGBoost and CatBoost, possibly due to its sensitivity to the hyperparameter 

settings. The CatBoost model, optimized with a depth of 6 and 200 iterations, achieved the highest individual 

model performance with a Balanced Accuracy of 0.9956, Precision of 0.9932, Recall of 0.9922, and an F1 Score 

of 0.9925. CatBoost’s robustness in handling categorical features and its ability to reduce overfitting through 

ordered boosting contribute to its superior performance. These results suggest that CatBoost is particularly well-

suited for this dataset, providing a near-optimal balance between precision and recall. 

The Stacking model, which integrates the predictions of multiple base models through a meta-learner, 

achieved a Balanced Accuracy of 0.9976, Precision of 0.9971, Recall of 0.9961, and an F1 Score of 0.9964. 

These results indicate that the stacking approach effectively combines the strengths of the individual models, 

leading to an improvement in overall performance. The high precision and recall demonstrate the model’s ability 

to accurately classify instances across different classes, minimizing both false positives and false negatives. 

Similarly, the Voting model, which aggregates the predictions of the base models through majority voting, also 

achieved a Balanced Accuracy of 0.9976, Precision of 0.9971, Recall of 0.9961, and an F1 Score of 0.9964. The 

Voting model’s performance is comparable to that of the Stacking model, indicating that both ensemble 

techniques are highly effective for this classification task. The slight differences in metrics between these two 

models are negligible, suggesting that either approach could be used depending on the specific requirements of 

the application, such as interpretability or computational efficiency. 

The results demonstrate the efficacy of ensemble methods, particularly stacking and voting, in improving 

the classification performance of individual models. The hybrid models significantly outperformed the single 

models, particularly in terms of balanced accuracy, which is crucial for handling imbalanced datasets. The high 

precision and recall values across all top-performing models indicate their robustness in accurately classifying 

different types of anemia, with minimal misclassification. The results also highlight the importance of 

hyperparameter tuning, as seen in the improved performance of the RandomForest, XGBoost, LightGBM, and 

CatBoost models. The optimized hyperparameters allowed these models to strike a balance between complexity 

and generalization, leading to superior performance compared to models with default settings. In contrast, the 

lower performance of the ExtraTree and ExtraTrees models underscores the challenges associated with models 

that do not generalize well across different classes. These models may benefit from further hyperparameter 

tuning or integration into a more robust ensemble framework to improve their performance. 

3.2 Trade-off Analysis 

In the context of developing machine learning models for anemia classification using CBC data, several trade-

offs must be considered to ensure that the chosen model aligns with the desired performance, computational 

efficiency, and interpretability. This trade-off analysis will focus on the key aspects of model performance, 

complexity, and practical application. One of the primary trade-offs in model development is between 

performance (as measured by metrics such as Balanced Accuracy, Precision, Recall, and F1 Score) and model 

complexity. In this study, ensemble methods such as Stacking and Voting demonstrated superior performance 

compared to individual models like DecisionTree, ExtraTree, and even complex models such as XGBoost and 

CatBoost. 

While the Stacking and Voting models achieved the highest balanced accuracy (0.9976) and F1 Score 

(0.9964), they also introduce additional complexity due to their reliance on multiple base models and a meta-

learner (in the case of Stacking). This added complexity can lead to increased computational cost during both 

training and inference phases. The need to train multiple models and combine their predictions in real-time can 

be resource-intensive, particularly in environments with limited computational resources. On the other hand, 

simpler models like DecisionTree and RandomForest, despite their relatively lower performance (Balanced 

Accuracy of 0.9896 and 0.8643, respectively), offer advantages in terms of lower computational cost and faster 

inference times. These models, particularly RandomForest with optimized hyperparameters, provide a good 

balance between performance and complexity, making them suitable for applications where computational 

efficiency is a priority. 

Another significant trade-off involves model interpretability versus accuracy. Ensemble methods, 

especially those involving complex algorithms like XGBoost, LightGBM, and CatBoost, often achieve high 
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accuracy at the expense of interpretability. For instance, the Stacking and Voting models, while highly accurate, 

are inherently more challenging to interpret because their predictions are based on the combined outputs of 

several base models, each of which may be complex in its own right. In contrast, models like DecisionTree and 

RandomForest are more interpretable. Decision trees, for instance, provide a clear, visual representation of the 

decision-making process, allowing practitioners to understand how specific decisions are made based on the 

input features. Random forests, though slightly more complex due to the aggregation of multiple decision trees, 

still offer a level of interpretability that is often sufficient for clinical applications. This makes them preferable in 

scenarios where transparency and the ability to explain decisions are critical, such as in healthcare settings where 

decisions need to be justified to medical professionals and patients. 

The trade-off between precision and recall is particularly relevant in the context of medical diagnostics. 

High precision indicates that the model has a low rate of false positives, which is crucial in preventing 

unnecessary treatments or interventions. High recall, on the other hand, ensures that most cases of anemia are 

correctly identified, minimizing the risk of missing patients who need treatment. In this study, models like 

XGBoost and CatBoost exhibited a good balance between precision and recall, making them effective in both 

correctly identifying anemia cases and minimizing false positives. The Stacking and Voting models also 

maintained this balance, achieving precision and recall values close to 0.9971 and 0.9961, respectively. 

However, focusing too heavily on maximizing precision can lead to a reduction in recall, potentially missing 

cases that need attention. Conversely, prioritizing recall may increase the number of false positives, leading to 

unnecessary follow-ups or treatments. The choice between these metrics should be guided by the specific clinical 

requirements. For instance, in a screening scenario where it is crucial to catch as many true cases as possible, a 

higher recall might be prioritized, even if it means accepting a slightly lower precision. 

Ensemble methods like Stacking and Voting tend to be more robust against overfitting, as they aggregate 

predictions from multiple models, each trained on different subsets of the data. This robustness is reflected in 

their high balanced accuracy and F1 scores across different classes, indicating that these models generalize well 

to unseen data. However, this robustness comes with the trade-off of increased training time and complexity, as 

these models require the training of several base learners and, in the case of Stacking, an additional meta-learner. 

On the other hand, individual models like DecisionTree and ExtraTree are more prone to overfitting, especially 

when used with default settings or without adequate regularization. While these models are faster to train, their 

tendency to overfit can lead to poor generalization, particularly in datasets with high variance or imbalanced 

class distributions. RandomForest, which strikes a balance by averaging the predictions of multiple decision 

trees, mitigates the risk of overfitting to some extent but still may not achieve the same level of robustness as a 

more complex ensemble like Stacking. 

When deciding on the most appropriate model for anemia classification, practical considerations such as 

deployment environment, computational resources, and the need for real-time decision-making must be factored 

into the trade-off analysis. For real-time applications or settings with limited computational resources, simpler 

models like DecisionTree or RandomForest may be preferable, as they offer faster inference times and require 

fewer resources. These models can be deployed in environments where quick decision-making is crucial, such as 

in emergency medical settings or mobile health applications. In contrast, for applications where accuracy and 

robustness are paramount, and computational resources are not a constraint, ensemble methods like Stacking and 

Voting are more suitable. These models, although computationally intensive, provide the highest level of 

predictive performance and generalization, making them ideal for use in comprehensive diagnostic systems 

where the cost of errors is high. 

3.3 Constraints and Limitations 

In any machine learning study, it is essential to acknowledge the constraints and limitations that may impact the 

results and generalizability of the findings. This section outlines the key constraints and limitations encountered 

during the development and evaluation of the hybrid machine learning models for anemia classification using 

CBC data. One of the primary constraints in this study is the availability and quality of the data. The dataset used 

for training and testing the models was limited in size, which may impact the robustness and generalizability of 

the models to new, unseen data. Additionally, the dataset was collected from a specific population, which might 

not fully represent the diversity of anemia cases across different demographics, geographic regions, or clinical 

settings. This limitation can lead to potential biases in the model, particularly if certain types of anemia are 

underrepresented in the dataset. Furthermore, while the CBC data is generally reliable, there may be variability 

in the measurements due to differences in laboratory procedures, equipment calibration, or human error. This 

variability can introduce noise into the data, potentially affecting the model's accuracy and consistency. 

The hybrid models, particularly those utilizing ensemble techniques like Stacking and Voting, are 

inherently complex. This complexity, while beneficial for improving predictive performance, comes at the cost 

of interpretability. In a clinical setting, it is often crucial for healthcare providers to understand the rationale 

behind a model's predictions, especially when making decisions about patient care. The black-box nature of 

ensemble models, where the decision-making process is not easily interpretable, poses a significant limitation in 

this regard. 
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 This lack of interpretability can limit the adoption of these models in practice, as clinicians may be reluctant to 

rely on predictions that cannot be easily explained. Although methods such as SHAP (SHapley Additive 

exPlanations) or LIME (Local Interpretable Model-agnostic Explanations) can be used to provide post-hoc 

explanations, these approaches add another layer of complexity and may not fully address the need for 

transparent decision-making. 

The computational requirements for training and deploying the hybrid models are substantial, particularly 

for ensemble methods like Stacking and Voting that involve training multiple base learners and a meta-learner. 

These models require significant processing power and memory, which may not be available in all clinical 

settings, especially in low-resource environments. Additionally, the time required to train these models can be a 

constraint, particularly if the models need to be frequently retrained to incorporate new data or adapt to changing 

clinical conditions. The computational cost also extends to the deployment phase, where real-time predictions 

may be necessary. In such scenarios, the latency introduced by complex models could be a critical limitation, 

making them less suitable for time-sensitive applications. 

Another limitation is the handling of imbalanced data, a common issue in medical datasets where certain 

classes (e.g., specific types of anemia) are underrepresented. Although techniques such as SMOTE were 

employed to mitigate this issue, they do not completely eliminate the challenges associated with imbalanced 

data. Models trained on imbalanced datasets may still exhibit biases toward the majority class, leading to lower 

performance in detecting minority class instances. This limitation is particularly concerning in medical 

applications where the accurate identification of less common conditions is critical. The potential for false 

negatives (i.e., failing to identify a case of anemia) could have serious consequences for patient outcomes. 

Therefore, while the models perform well overall, their effectiveness in classifying less frequent types of anemia 

should be interpreted with caution. 

The models developed in this study are specifically tailored for anemia classification using CBC data. 

While the techniques employed, such as ensemble learning and hyperparameter optimization, are generally 

applicable to other medical classification tasks, the models themselves may not generalize well to different 

clinical conditions without significant retraining and validation. For instance, applying these models to classify 

other hematological disorders or using a different type of medical data (e.g., imaging or genetic data) would 

require careful consideration of the underlying differences in the data structure and the relevance of the features 

used in the current models. This limitation highlights the need for domain-specific adaptation and validation 

before these models can be broadly applied in different clinical contexts. 

Lastly, the use of machine learning models in healthcare settings raises important ethical and legal 

considerations. The deployment of these models must comply with regulations governing patient data privacy 

and the use of automated decision-making tools in clinical practice. The models must be thoroughly validated to 

ensure they do not inadvertently introduce biases or errors that could harm patients. Moreover, there is a need for 

clear guidelines on the role of these models in clinical decision-making. While they can provide valuable support 

to clinicians, they should not replace human judgment, particularly in complex cases where the nuances of 

patient care require a holistic understanding that goes beyond what current models can provide. 

Table 1. Deep Learning Results 

Model 
Balanced 

Accuracy 
Precision Recall 

F1 

Score 
Best Params 

DecisionTree 0.9896 0.9953 0.9922 0.9931 {} 

ExtraTree 0.5816 0.7739 0.7588 0.7624 {} 

RandomForest 0.8643 0.9855 0.9883 0.9865 {'max_depth': 10, 'n_estimators': 200} 

ExtraTrees 0.5796 0.8565 0.8638 0.8534 {} 

XGBoost 0.9954 0.9932 0.9922 0.9924 {'max_depth': 3, 'n_estimators': 100} 

LightGBM 0.9605 0.9931 0.9922 0.9920 
{'max_depth': None, 'n_estimators': 

100} 

CatBoost 0.9956 0.9932 0.9922 0.9925 {'depth': 6, 'iterations': 200} 

Stacking 0.9976 0.9971 0.9961 0.9964 {} 

Voting 0.9976 0.9971 0.9961 0.9964 {} 

4. CONCLUSION 

This study explored the development and evaluation of hybrid machine learning models for the classification of 

anemia types using Complete Blood Count (CBC) data. By leveraging advanced ensemble techniques such as 

Stacking and Voting, we achieved significant improvements in predictive performance compared to individual 

models. The results demonstrated that these hybrid models, particularly when tuned with appropriate 

hyperparameters, offer superior accuracy, balanced accuracy, precision, recall, and F1 scores, making them 

highly effective for medical classification tasks, especially in handling imbalanced datasets. The Stacking and 

Voting models, which integrate multiple base classifiers, exhibited the highest performance metrics, with 
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balanced accuracy reaching 0.9976 and F1 scores of 0.9964. These results highlight the robustness of ensemble 

methods in capturing complex patterns within the data and their ability to generalize well across different 

classes. In contrast, simpler models like DecisionTree and RandomForest, while more interpretable and 

computationally efficient, showed slightly lower performance, underscoring the trade-off between model 

complexity and accuracy. However, the study also identified several constraints and limitations that must be 

addressed to ensure the practical application of these models in clinical settings. These include the challenges of 

data availability and quality, the interpretability of complex models, the computational demands of ensemble 

methods, and the ethical considerations surrounding the use of machine learning in healthcare.Future work 

should focus on expanding the dataset to enhance model generalizability, improving the interpretability of hybrid 

models, and exploring ways to reduce computational costs. Additionally, ongoing collaboration with healthcare 

professionals will be crucial to ensure that these models are not only accurate but also aligned with clinical needs 

and ethical standards. 
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