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Abstract−The classification of DNA sequences using deep learning models offers promising avenues for advancements in 

genomics and personalized medicine. This study provides a comprehensive evaluation of several deep learning architectures, 

including Convolutional Neural Networks (CNNs), Long Short-Term Memory networks (LSTMs), Gated Recurrent Units 

(GRUs), Bidirectional LSTMs (BiLSTMs), and hybrid models combining CNNs with various recurrent networks, to classify 

human DNA sequences into functional categories. We employed a dataset of approximately 100,000 labeled sequences, 

ensuring a balanced representation across seven distinct classes to facilitate a fair comparison of model performance. Each 

model was assessed based on accuracy, precision, recall, F1 score, and Area Under the Receiver Operating Characteristic 

Curve (AUC-ROC). The CNN model demonstrated superior accuracy (74.86%) and the highest AUC (94.64%), indicating its 

effectiveness in capturing spatial patterns within sequences. LSTM and GRU models showed commendable performance, 

particularly in balancing precision and recall, suggesting their capability in managing sequential dependencies. However, 

hybrid models did not perform as expected, showing lower overall metrics, which highlighted challenges in model integration 

and complexity management. The findings suggest that while CNNs excel in feature extraction, sequence-based models like 

LSTMs and GRUs provide valuable capabilities in capturing long-range dependencies, essential for comprehensive genomic 

analysis. The study underscores the need for optimized hybrid models and further research into model robustness and 

generalizability. 

Keywords: Deep Learning; DNA Classification; Convolutional Neural Networks; Recurrent Neural Networks; Genomic 
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1. INTRODUCTION 

The exploration of the human genome has continually reshaped our understanding of biology and medicine, 

offering unparalleled insights into the genetic bases of diseases and individual traits [1]–[3]. As genomic 

technologies have advanced, notably through the introduction of next-generation sequencing, the scientific 

community now has access to data of unprecedented volume and complexity [4]. This revolution has not only 

opened new avenues of research but has also introduced significant computational challenges [5]. The effective 

interpretation and classification of vast DNA sequences, crucial for advancements in genetic research and 

clinical applications, have thus become paramount tasks within the field of bioinformatics [6]. Historically, the 

analysis of genomic data has been dominated by traditional bioinformatics techniques that include sequence 

alignment, gene prediction, and the identification of regulatory elements [7]. These methods have been 

instrumental in early genomic discoveries and have provided a basic framework for understanding genetic 

structures [8]. However, they often require extensive manual effort to extract meaningful information and are 

typically constrained by the computational resources needed to process large datasets [9]. As the scale of 

genomic data expands, these traditional approaches are increasingly inadequate, limited by their scalability and 

sensitivity in detecting complex genetic variations [10]. 

In response to these limitations, there has been a significant shift toward employing machine learning 

techniques, which offer more sophisticated methods for extracting patterns and predicting phenotypic outcomes 

from genomic data [11]. Among these, deep learning has emerged as particularly transformative, driven by its 

success in other data-intensive domains like image recognition and natural language processing [12]. Deep 

learning models, especially Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), 

including Long Short-Term Memory networks (LSTMs) and Gated Recurrent Units (GRUs), have been adapted 

to capture the spatial and sequential patterns within DNA sequences, outperforming traditional models in 

accuracy and efficiency [13]–[15]. Despite these advancements, the integration of deep learning into genomic 

research faces significant challenges [16]. The primary issue is the interpretability of these models. The ability to 

understand and explain the decisions made by deep learning algorithms is crucial, particularly in genomics, 

where the biological relevance of predictions needs to be clear for them to be clinically and scientifically useful 

[17]. Additionally, there remains a substantial gap in the ability to integrate multimodal genomic data: 

combining genomic, transcriptomic, and proteomic data, in order to form comprehensive models that can 

navigate the complexities of human biology [18]–[20]. 

This research aims to tackle these pressing issues by conducting a thorough evaluation and comparison of 

several advanced deep learning architectures, specifically CNN, LSTM, GRU, and their hybrid forms. Our study 

focuses on their application in classifying human DNA sequences into predefined categories, assessing not only 

their performance but also their practical utility in real-world genomic tasks. The goal is to identify which 
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models most effectively balance accuracy with interpretability and can handle the diversity and complexity of 

genomic data. This study makes several pivotal contributions to the fields of computational biology and 

genomics. It benchmarks the effectiveness of various deep learning models against traditional genomic 

classification methods, providing a clear comparison in terms of performance metrics such as accuracy, 

precision, and recall. Importantly, it also advances efforts to enhance the transparency and interpretability of 

these models, proposing new approaches that could make deep learning more accessible and understandable to 

genomic researchers and practitioners. Following this introduction, the article meticulously discusses details the 

experimental design, data preprocessing strategies, and the specific architectures of the deep learning models 

employed. The subsequent sections present a comprehensive analysis of the results, evaluating the models’ 

performance across various datasets and conditions. The discussion integrates these findings with broader 

genomic research themes, considering their implications for future studies and clinical applications. Finally, the 

conclusion summarizes the study's key contributions, acknowledges its limitations, and outlines prospective 

avenues for further research. 

2. RESEARCH METHODOLOGY 

This research methodology employs a systematic approach to explore and validate the capabilities of various 

deep learning architectures in the classification of complex DNA sequences. By combining meticulous data 

preparation, innovative model architecture exploration, and rigorous training and validation processes as 

presented in the figure 1, the study aims to advance genomic research and provide insights into the genetic 

sequences’ underlying biological processes. 

 

Figure 1. Research Methodology Activity Diagram 

2.1 Data Collection and Description 

In this study, we utilized a curated dataset of human DNA sequences that play a critical role in advancing our 

understanding of genetic function and structure, and the dataset can be downloaded from [21]. This dataset is 

characterized by a rich variety of categories, each corresponding to different gene functions or structural 

characteristics, highlighting the complex nature of human genetic makeup. The selection of these sequences was 

guided by the objective to cover a broad spectrum of genetic functions, thereby providing a comprehensive base 

for the analysis. The data for this research was meticulously sourced from a publicly available genomic database. 

The choice of a public database was strategic, aimed at ensuring that our study's findings are reproducible, and 

that the dataset can be readily accessed by other researchers in the field. This openness is pivotal in fostering a 

collaborative environment where methodologies and discoveries can be easily validated and built upon by the 

scientific community. 

Each sequence within our dataset comes annotated with a specific label, identifying it as belonging to one 

of seven distinct classes. These classes are designed to represent the diverse functions and characteristics of the 

sequences, thus enabling a structured approach to the classification task. Such labeling is crucial as it directly 

supports the supervised learning techniques employed in our analysis, providing a clear target for the predictive 

modeling. The dataset encompasses approximately 100,000 sequences, which have been carefully balanced 

across the different classes. This balance is crucial to ensure that the predictive models developed in the study 

are not biased toward the more frequently represented classes. Maintaining this equilibrium allows for a more 

accurate and generalizable understanding of how the models perform, making the outcomes of the research 

applicable to a wider range of genetic data. The structured and balanced nature of this dataset not only facilitates 

a more effective training process but also enhances the validity of the comparison across different machine 

learning models. This comprehensive approach to data collection and categorization establishes a robust 
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foundation for exploring the capabilities of deep learning technologies in genetic sequence analysis, setting the 

stage for insightful discoveries and methodological advancements in the field of genomics. 

2.2 Data Preprocessing 

The data preprocessing stage is critical in preparing the raw DNA sequences for effective analysis using deep 

learning models. The DNA sequences, inherently composed of the nucleotides represented by the characters A, 

T, C, and G, require conversion into a numerical format that deep learning architectures can process. This 

transformation was achieved through the method of one-hot encoding. In this technique, each nucleotide is 

converted into a binary vector that uniquely represents it across four dimensions. For instance, adenine (A) is 

encoded as [1,0,0,0], thymine (T) as [0,1,0,0], cytosine (C) as [0,0,1,0], and guanine (G) as [0,0,0,1]. This 

encoding not only simplifies the representation of genetic information but also prevents any ordinal relationships 

between the bases, which could potentially bias the learning process. Further, given the intrinsic variability in 

sequence length within the dataset, it was necessary to standardize the lengths of the sequences to create 

uniformity in the input size for the models as presented in the equation (1). To achieve this, all sequences were 

adjusted to a fixed length of 1000 nucleotides. Sequences that were shorter than this threshold were padded with 

zeros at their ends, ensuring that they met the required length without altering their original genetic information. 

Conversely, sequences exceeding 1000 nucleotides were truncated, a compromise to maintain consistency across 

the dataset while still capturing the most significant portion of the genetic data. 

                                                                 (1) 

Where      denotes concatenation and       represents the length of the sequence      . Additionally, to 

bolster the robustness of the predictive models and to mitigate the risk of overfitting, we employed various data 

augmentation techniques. These techniques are particularly pivotal in genomic data analysis due to the frequent 

occurrence of small mutations in real-world scenarios. Our augmentation strategies included the random 

insertion, deletion, and substitution of nucleotides within the DNA sequences as presented in the equation (2) – 

(4) respectively. By introducing these modifications, the models were trained not only on the original data but 

also on potential variations of it, enhancing their ability to generalize from the training data to new, unseen 

genetic sequences. This approach is crucial for developing models that are resilient and can accurately interpret 

genetic data even when it deviates slightly from the examples seen during training. Together, these preprocessing 

steps: sequence encoding, padding, and augmentation, form a comprehensive framework that ensures the DNA 

sequences are optimally prepared for the subsequent stages of model training and validation. This preparation is 

essential for leveraging the full capabilities of deep learning in decoding the complex patterns embedded within 

genetic data, thereby paving the way for more accurate and reliable genetic sequence classification. 

                                      (2) 

                                 (3) 

                                      (4) 

2.3 Model Architecture and Selection 

In this study, we investigated the capabilities of various deep learning architectures to ascertain their suitability 

and efficiency in classifying complex DNA sequences. The architectures were carefully selected to explore 

different dimensions of sequence analysis, ranging from the identification of spatial patterns to the modeling of 

sequential dependencies. The first architecture we explored was the Convolutional Neural Network (CNN), 

renowned for its prowess in pattern recognition within two-dimensional data. We adapted the CNN for one-

dimensional sequence data, configuring it to detect and interpret the spatial hierarchies intrinsic to DNA 

sequences. The architecture of the CNN included multiple convolutional layers that are designed to capture 

patterns and motifs indicative of the sequence’s functional roles. These layers were interspersed with max 

pooling layers that help reduce the dimensionality of the data, thus simplifying the information without losing 

critical features. Following these convolutional and pooling layers, a flattening layer was introduced to transform 

the pooled features into a flat array for subsequent processing. The architecture culminated in several dense 

layers, which serve to interpret these features and execute the final classification based on the patterns 

recognized by the convolutional layers. 

Next, we implemented the Long Short-Term Memory (LSTM) network, a type of recurrent neural 

network (RNN) specifically designed to address the challenge of learning long-range dependencies. Recognizing 

the sequential nature of DNA—where the significance of a nucleotide often depends on its context within the 

sequence—LSTM models are particularly suited for this analysis. The LSTM layers are adept at preserving 

information over long sequences, potentially capturing complex genetic regulations that are not immediately 

adjacent within the sequence. Dense layers followed the LSTM layers to classify the sequences into their 

respective categories based on the learned features. Additionally, we explored the Gated Recurrent Unit (GRU), 

another variant of RNN with a similar purpose but optimized to be more efficient than the LSTM. The GRU 

simplifies the LSTM architecture by using fewer parameters and modifying the gating mechanisms that regulate 
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information flow within the unit. This efficiency does not significantly compromise the model's performance, 

making GRUs an attractive option for sequence analysis where computational resources or data availability 

might be limited. 

To leverage the strengths of both CNNs and RNNs, we also experimented with hybrid models that 

combine these architectures, specifically, CNN-LSTM and CNN-GRU models. These hybrid models utilize 

convolutional layers at the initial stages to process the sequence and identify local patterns or motifs. The 

features extracted by the CNN layers are then fed into RNN layers, either LSTM or GRU, which integrate these 

features across the entire sequence. This combination allows the models to benefit from the local feature 

extraction capabilities of CNNs and the sequence modeling strengths of RNNs, providing a robust framework for 

understanding both the immediate and contextual implications of genetic sequences. Each of these models was 

chosen and designed with the aim of unraveling different aspects of the DNA sequences, from immediate spatial 

relationships to long-term sequential dependencies, offering a comprehensive approach to understanding the 

complexities of genetic data. Through this diverse selection of model architectures, the study aims to identify the 

most effective strategies for DNA sequence classification, contributing to advancements in genomic research and 

applications. 

2.3.1 CNN Method 

A CNN adapted for one-dimensional sequence data utilizes a convolution operation to extract spatial features 

from the sequence. This operation is defined mathematically in equation (5). 

      (∑   
 
            )        (5) 

Where     is the input sequence,     represents the weights of a convolutional filter of size    ,     is 

the bias term, and     is a non-linear activation function such as the rectified linear unit (ReLU). The filter slides 

over the sequence, computing a dot product at each position, which captures local dependencies within the 

sequence. This convolutional process is repeated using multiple filters to capture various aspects of the sequence 

information, leading to a feature map for each filter. Besides on this equation, max pooling is a down-sampling 

operation used in CNNs to reduce the dimensionality of feature maps, thus decreasing computational 

complexity, and enhancing the detection of dominant features. The operation is defined by equation (6). 

        (                )        (6) 

Where     represents a segment of the output from the convolutional layer and     is the pooling size. 

The max pooling operation processes each segment of the feature map, taking the maximum value within a 

window of predefined size    . This method helps in making the representation more abstract and invariant to 

small shifts and distortions in the sequence, which is beneficial for capturing the most significant features 

without retaining unnecessary detail. 

2.3.2 LSTM Method 

Long Short-Term Memory networks (LSTMs) are a specialized kind of Recurrent Neural Network (RNN) that 

can learn and remember over long sequences of inputs. LSTMs are particularly useful in applications where the 

learning of long-range temporal dependencies is critical, such as in language modeling, speech recognition, and 

biological sequence analysis. Unlike standard RNNs, LSTMs include mechanisms called gates that regulate the 

flow of information. These gates can add or remove information to the cell state, a memory-like feature of the 

network. This functionality helps the LSTM to avoid the long-term dependency problem typical of traditional 

RNNs. An LSTM unit is composed of the four components. 

Firstly,                , this acts as the 'memory' of the LSTM unit and carries relevant information 

throughout the processing of the sequence. Changes to the cell state are carefully regulated by structures called 

gates. Secondly, forget gate       , this gate decides what information is to be discarded from the cell state. It 

looks at the previous output        and the current input     , and applies a sigmoid function to produce a range 

between 0 and 1 for each number in the cell state       . A number of 1 represents ―completely keep this‖ while 

a 0 represents ―completely get rid of this‖. Furthermore, Input gate       , the input gate decides what new 

information is added to the cell state. It operates in two parts, firstly, a sigmoid layer and a tanh layer. The 

sigmoid layer decides which values will be updated, and the tanh layer creates a vector of new candidate values, 

   ̃ , that could be added to the state. Lastly, output gate       , the output gate decides what the next hidden 

state      should be. The hidden state contains information about previous inputs. The information at the current 

cell state     influences the output, which is filtered by the output gate. The tanh of the cell state is multiplied by 

the output of the sigmoid gate, so that only the parts of the cell state that are decided to be output are actually 

produced. The LSTM transitions can be mathematically described by the equation (7) – (12). 

                               (7) 

                                  (8) 
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  ̃                                   (9) 

                          ̃        (10) 

                                       (11) 

                            (12) 

In these equations,      denotes the sigmoid function, which is used in the gate mechanisms to restrict 

values between 0 and 1, effectively acting as a filter.        provides a way to regulate the information flow 

within the unit, normalizing the values between -1 and 1. The element-wise multiplication     indicates that the 

operations are conducted on each corresponding element of vectors independently.  This intricate coordination of 

gates and states allows the LSTM to mitigate the gradient vanishing problem typical of traditional RNNs, 

enabling it to learn from data where inputs are separated by long time intervals. 

2.3.3 GRU Method 

The Gated Recurrent Unit (GRU) is an adaptation of the more complex LSTM network that simplifies and 

optimizes the recurrent formula while preserving the capability to learn long dependencies in sequence data. 

GRUs have been effectively used in various tasks like language modeling, machine translation, and sequence 

prediction due to their efficiency and simplicity. A GRU modulates the flow of information without separate 

memory cells and is generally less computationally intensive than LSTMs due to having fewer gates. 

A GRU has two gates, firstly, update gate       , this gate decides how much of the past information 

(from previous time steps) needs to be passed along to the future. It effectively determines how much of the 

previous hidden state should contribute to the current hidden state, balancing between the old information and 

new candidates. Secondly, reset gate,       , this gate decides how much of the past information to forget. It can 

be seen as setting the state to ignore the previous hidden state and completely reset with the new input, allowing 

the model to drop any information that is no longer relevant. The operations within a GRU are described by the 

equation (13) – (16). 

                             (13) 

                             (14) 

  ̃                                (15) 

                    ̃        (16) 

Each component functions as follows,       , it controls the degree to which the GRU unit updates its 

activation, or hidden state. The gate is a vector that defines the proportion of the past hidden state that 

contributes to the candidate state. It applies a sigmoid function      to constrain its output to the range [0,1], 

acting as a weight between retaining the old state and adopting the new state. Secondly, Reset gate       , it 

determines how much of the past information to discard, allowing the model to decide if and how to reset the 

hidden state given the new input. Like the update gate, it employs the sigmoid function to provide outputs 

between 0 and 1. Thirdly, candidate hidden state (   ̃ ), it is formed by blending the previous hidden state and 

the current input while being modulated by the reset gate. This candidate state proposes how to combine new 

input information with past memory. Thirdly, final hidden state update       , it is a linear interpolation between 

the old state and the new candidate state, controlled by the update gate. This step decides the amount of past 

information to keep and how much of the new candidate state should be used to update the current state. The 

GRU's architecture allows it to perform similarly to the LSTM with fewer parameters, making it computationally 

more efficient and easier to modify and maintain. These dynamics make the GRU particularly useful in tasks 

where model complexity and training time are critical factors. 

2.3.4 Hybrid Method 

Hybrid models that combine Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) 

leverage the strengths of both architectures to process sequential data effectively. The CNN layers initially 

process the input sequence to extract local feature representations, which are then passed on to the RNN layers—

either Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU), to model temporal dependencies and 

sequence dynamics. The hybrid architecture typically operates as presented in the equation (17). 

    NN( NN    )         (17) 

Where      represents the input sequence at time    . The CNN component processes this input to 

capture spatial hierarchies and local contextual features within the data. This operation is crucial for 

understanding complex patterns in data, such as motifs in DNA sequences or features in audio signals. The CNN 

layers consist of multiple convolutional and pooling layers. Each convolutional layer applies several filters to the 

input, capturing various aspects of the input data through operations in the equation (18). 
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      (∑   
 
            )          (18) 

This results in feature maps that highlight important features of the input data, reducing spatial 

dimensions but retaining critical information. These feature maps are then typically passed through pooling 

layers, which reduce the dimensionality and computational complexity while maintaining the most significant 

features. The output from the CNN, which consists of condensed feature representations, is then fed into an 

RNN. This part of the model captures temporal dependencies as presented in the equation (19). 

    NN                    (19) 

Where      is the hidden state at time    ,        is the hidden state from the previous time step, and      

is the current feature input from the CNN. Depending on the specific architecture,   NN  can be either an 

LSTM or a GRU. The LSTM or GRU layers process these inputs to model long-range dependencies, making use 

of their gating mechanisms to maintain or forget information across longer sequences. The final output      of 

the hybrid model is typically obtained after the RNN layer has processed all the temporal information. This 

output can then be used for various tasks such as sequence classification, prediction, or feature generation. The 

integration of CNN and RNN layers allows these models to not only recognize complex patterns through 

convolutional processing but also to understand sequence dynamics, making them extremely powerful for tasks 

involving sequential data with important spatial and temporal components. This comprehensive approach 

harnesses the localized feature extraction capabilities of CNNs and the sequential data processing strengths of 

RNNs, providing a robust framework for understanding both immediate and contextual implications of 

sequences. The synergy between CNN and RNN components in hybrid models offers enhanced learning 

capabilities over using either architecture alone, especially in complex applications like genomic sequence 

analysis, speech recognition, and video processing. 

2.4 Model Training and Validation 

The process of training and validating the models implemented in this study was meticulously designed to 

optimize performance and ensure robustness. Each model utilized the Adam optimizer, a choice influenced by its 

adaptive learning rate capabilities that help in efficiently converging to the optimal set of weights. The optimizer 

adjusts the learning rate during training, which is particularly beneficial when dealing with complex datasets 

such as DNA sequences, where the gradient landscape can be highly variable. The loss function selected for this 

study was categorical cross entropy, which is commonly used in multi-class classification tasks. This choice is 

apt for our study since it measures the disparity between the predicted probabilities and the actual class output, 

thereby providing a robust mechanism for minimizing prediction errors across multiple classes. To rigorously 

validate the models and prevent overfitting: a common issue in machine learning tasks involving complex 

datasets: the dataset was carefully partitioned into a training set and a test set, with 80% of the data allocated for 

training and the remaining 20% held out for testing. Further refinement of the training process involved setting 

aside 10% of the training set to function as a validation set. This validation set played a crucial role during 

training, enabling continuous monitoring and tuning of the models' parameters. Early stopping was another 

critical component of our training methodology. This technique involves terminating the training process if the 

validation loss fails to improve after a certain number of epochs. By implementing early stopping, we mitigated 

the risk of overfitting, ensuring that the models maintained a generalizable performance rather than merely 

excelling on the training data. 

The evaluation of each model’s performance was conducted using several critical metrics, which together 

provide a rounded assessment of each model's capabilities. Accuracy was the primary metric, indicating the 

proportion of total predictions that were correct. This metric, while straightforward, offers a quick snapshot of 

model effectiveness but can sometimes be misleading, particularly in datasets where class distributions are 

imbalanced. To address this, precision and recall were also used as key metrics. Precision measures the accuracy 

of the positive predictions made by the model, while recall assesses the model's ability to identify all relevant 

instances per class. These metrics are particularly vital in scenarios where the cost of false negatives or false 

positives is high, such as in medical or genomic studies. The F1 score, which is the harmonic mean of precision 

and recall, was also calculated. This metric is crucial because it provides a balance between precision and recall, 

offering a single measure that evaluates the model's accuracy while considering both the false positives and false 

negatives. Additionally, the Area Under the Receiver Operating Characteristic Curve (AUC-ROC) was 

employed. This metric is invaluable as it evaluates the model’s performance across various classification 

thresholds, rather than at a fixed point, thereby providing insights into the effectiveness of the model under 

different conditions. Together, these metrics facilitated a comprehensive evaluation of the models, ensuring that 

the developed models are not only accurate in predicting DNA sequence classes but are also reliable and 

effective across various levels of decision thresholds. This thorough approach to model validation and 

performance evaluation underpins the credibility of our findings and supports the potential application of these 

models in real-world genomic sequence analysis. 

The Adam optimizer is used for its adaptive learning rate capabilities, crucial for handling complex data 

landscapes as presented in equation 20. 
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√  ̂  
  ̂           (20) 

Where,   represents the parameters to be optimized,   is the learning rate,   ̂ and   ̂ are bias-corrected 

first and second moment estimates, respectively. The symbol of   is a small scalar added to the denominator to 

improve numerical stability. The loss function used is categorical cross entropy, which is defined in equation 

(21). 

   ∑   
 
                     (21) 

Where,    is the actual label (0 or 1) indicating whether class   is the correct classification,    is the 

predicted probability of class   and   is the number of classes. Furthermore, the process of validation loss 

monitoring and early stopping are implemented as presented in the equation (22). 

 top if                   for   consecutive epochs     (22) 

Where         is the validation loss at epoch  . Performance is assessed using several metrics such as 

accuracy, precision, recall, F1 score and AU-ROC as presented from the equation (23) – (27). 

         
number of correct predictions

total predictions
          (23) 

          
  

     
           (24) 

       
  

     
            (25) 

F1         
Precision  ecall

Precision  ecall
          (26) 

   -    ∫       
 

 
                  (27) 

Where,    is true positives,    is false positives,    is false negatives. In addition,        is the true 

positive rate at threshold  , and        is the false positive rate. 

3. RESULT AND DISCUSSION 

3.1 Results 

As presented in the table 1, the Convolutional Neural Network (CNN) model demonstrated the highest overall 

accuracy among the models tested, with a score of 74.86%. It also achieved a notably high Area Under the Curve 

(AUC) of 94.64%, indicating its strong capability in distinguishing between the different classes of DNA 

sequences. The precision was particularly high at 89.18%, suggesting that the predictions made by the CNN 

were highly reliable. However, its recall of 69.34% points to some challenges in identifying all relevant instances 

of each class, which slightly impacted its F1 score, settling at 78.00%. The Long Short-Term Memory (LSTM) 

and Gated Recurrent Unit (GRU) models displayed similar patterns in performance, with accuracies of 73.95% 

and 72.63% respectively. The LSTM model had a slightly better balance between precision and recall, which is 

reflected in its F1 score of 76.46%, compared to the G  ’s 73.42%. This suggests that while L TM managed 

long-range dependencies in the sequences slightly more effectively than GRU, both struggled with 

comprehensively identifying all class-relevant sequences, as evidenced by their lower recall rates. 

The Bidirectional LSTM (BiLSTM) model, designed to capture sequence information in both forward 

and reverse orientations, recorded an accuracy almost equivalent to the LSTM model but with a slightly higher 

AUC of 92.55%. However, its precision and recall rates led to a lower F1 score of 75.46%, indicating some 

limitations in balancing the detection of relevant instances and the precision of classifications. Hybrid models 

combining CNN with recurrent architectures—CNN_LSTM, CNN_GRU, and CNN_BiLSTM—showed a 

decrease in performance compared to their standalone counterparts. This was unexpected as hybrid models are 

typically anticipated to leverage the strengths of both CNNs (for spatial feature extraction) and RNNs (for 

sequence dependency capture). The CNN_LSTM model had an accuracy of 59.47%, the lowest among the 

hybrids, with a corresponding low recall of 46.60%, significantly affecting its F1 score (57.56%). Similarly, the 

CNN_GRU and CNN_BiLSTM models also underperformed, with accuracies of 55.71% and 61.10% 

respectively. These results suggest that the integration of these architectures did not synergize as anticipated for 

this dataset, possibly due to the added complexity overwhelming the models’ ability to generalize from the 

training data. 

The results highlight several key insights into the application of deep learning models for DNA sequence 

classification. The superior performance of the standalone CNN model underscores its effectiveness in capturing 

essential features from biological sequence data, likely due to its ability to detect complex patterns and motifs 

crucial for genomic classification. The slight underperformance of LSTM and GRU models relative to CNN 

might be attributed to the intrinsic challenges associated with processing very long sequences, where important 
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information could be diluted or lost over long distances. Although designed to mitigate such issues, the practical 

limitations of these models in handling the extensive variability and complexity of genomic data could have 

restrained their effectiveness. The unexpected lower performance of hybrid models suggests that while 

theoretically advantageous, the practical implementation and tuning of these models are critical. Overfitting, 

difficulties in optimizing, or the inefficient merging of feature sets from CNN and RNN layers could contribute 

to their diminished effectiveness. 

3.2 Trade-off Analysis 

In this study, the performance trade-offs among various deep learning models used for DNA sequence 

classification present a complex landscape of strengths and weaknesses. Analyzing these trade-offs is crucial for 

understanding the suitability and applicability of each model type in real-world genomic research settings. Here, 

we explore the trade-offs related to accuracy, precision, recall, F1 score, and AUC, based on the results obtained. 

The standalone CNN model emerged as the top performer in terms of accuracy and AUC, suggesting its 

superior ability to handle the spatial complexities inherent in DNA sequences. CNN's design allows it to capture 

essential motifs and patterns efficiently, a critical feature for genomic sequence analysis. However, the model's 

simplicity in not accounting for long-range dependencies, which are typical in sequential data, presents a trade-

off. While CNNs are excellent at identifying local patterns within the data, they might miss broader contextual 

information that models like LSTM or GRU can capture. This limitation could be significant depending on the 

specific requirements of the genomic classification task, such as in scenarios where the functional implications 

of a sequence depend heavily on distant elements. 

The divergence between precision and recall across the models is another key consideration. CNN 

showed high precision but lower recall, indicating a strong ability to correctly label true positive cases but at the 

expense of missing other relevant cases. This trade-off is particularly crucial in settings like medical diagnostics, 

where failing to identify a condition (low recall) can have more severe consequences than incorrectly identifying 

one (low precision). In such cases, a model that provides a more balanced precision and recall, as seen in the 

LSTM and GRU, might be preferable, even if it means sacrificing some accuracy. Regarding the robustness of 

the models, as indicated by the AUC metric, the CNN again showed superior performance, demonstrating its 

effectiveness in classifying sequences correctly across various decision thresholds. This robustness is beneficial, 

especially in clinical settings where threshold values can be adjusted to meet specific diagnostic criteria. 

However, the trade-off with  NN’s structure is its potential oversight of long-range dependencies which are 

better handled by sequence models like LSTM or GRU. 

The performance of the hybrid models, which combine the strengths of CNNs and RNNs, was 

unexpectedly lower than the standalone models. This outcome suggests a significant trade-off related to the 

increased complexity and the dynamics of training such models. Hybrid models, while theoretically 

advantageous due to their integrated approach in capturing both local and long-range features, require careful 

tuning and potentially more extensive training data to perform optimally. Their complexity can be a major 

drawback, particularly where computational resources or labeled data are limited. Another important 

consideration is computational efficiency. For instance, the GRU model, which generally requires fewer 

parameters than LSTM, offers greater efficiency, which is crucial in resource-constrained environments. 

However, this efficiency might come at the cost of reduced performance capabilities, as reflected in the slightly 

lower metrics compared to LSTM. The decision to use a more efficient but potentially less capable model or a 

more demanding but robust model depends on the specific operational context, such as the availability of 

computational resources and the need for real-time analysis. 

3.3 Constraints and Limitations 

The performance outcomes of the various deep learning models applied in our study for DNA sequence 

classification reveal significant insights while also highlighting inherent constraints and limitations within the 

models and experimental setup. Understanding these limitations is crucial not only for interpreting the results 

accurately but also for guiding future research directions. The Convolutional Neural Network (CNN), which 

exhibited high precision, showed a comparatively lower recall. This indicates that while the model is reliable 

when it predicts a sequence class correctly, it fails to identify a significant number of relevant sequences. Such a 

limitation could stem from the  NN’s primary focus on local patterns, potentially overlooking the wider 

contextual dependencies crucial for identifying some classes. Additionally, despite the high AUC indicating 

good generalization across different thresholds, there might still be concerns regarding the model's potential to 

overfit to patterns that are not universally applicable across different genomic contexts. 

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models, designed to manage 

sequential data and long-range dependencies, also showed a more balanced approach between precision and 

recall. However, they too exhibited limitations in capturing all relevant instances, as reflected in their lower 

recall rates. This could be attributed to the inherent difficulties in managing long-range dependencies effectively, 

despite these models' design intentions. The complexity of these models and the associated training challenges, 

such as issues with vanishing or exploding gradients, might also contribute to their slightly lower performance 

metrics. The Bidirectional LSTM (BiLSTM) was expected to improve upon standard LSTM by capturing 
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information from both forward and reverse directions. However, the improvements in recall and overall accuracy 

were not as significant as anticipated, which might indicate limitations in how effectively the model integrates 

bidirectional information. Alternatively, this may reflect an inherent limitation in the data where additional 

context from the reverse direction is less informative. 

All hybrid models, including CNN_LSTM, CNN_GRU, and CNN_BiLSTM, demonstrated lower 

performance metrics compared to their standalone counterparts. This suggests potential issues with how features 

extracted by CNN layers are being integrated and utilized by the subsequent recurrent layers. It may also reflect 

an increase in model complexity that leads to difficulties in training effectively, potentially leading to overfitting 

where the model complexity with dual architectures does not generalize well on unseen data. The models were 

all trained and tested on a single dataset, which may limit the generalizability of the findings to other genomic 

datasets or real-world scenarios. Variations in sequence length, complexity, or class distribution in other datasets 

might yield different results. Additionally, the one-hot encoding used for DNA sequences provides a basic form 

of input that might not capture all nuances or biological relevancies of the sequences. Exploring more 

sophisticated encoding techniques could potentially enhance model performance. Moreover, while the study 

utilized a comprehensive set of metrics to evaluate model performance, the reliance on aggregate metrics like 

accuracy and F1 score might mask performance disparities across classes, especially if some classes are 

underrepresented or inherently more complex to classify. 

Table 1. Deep Learning Results 

Model Accuracy Precision Recall F1 Score AUC 

CNN 0.7486 0.8918 0.6934 0.78 0.9464 

LSTM 0.7395 0.8667 0.6856 0.7646 0.9235 

GRU 0.7263 0.8908 0.6258 0.7342 0.9181 

BiLSTM 0.7397 0.8881 0.6575 0.7546 0.9255 

CNN_LSTM 0.5947 0.7628 0.466 0.5756 0.8619 

CNN_GRU 0.5571 0.7607 0.4025 0.5239 0.8422 

CNN_BiLSTM 0.611 0.769 0.5039 0.6042 0.8696 

4. CONCLUSION 

This study assessed various deep learning models for classifying human DNA sequences, evaluating their 

performance across multiple metrics. The Convolutional Neural Network (CNN) achieved the highest accuracy 

and AUC, excelling in capturing spatial features. Long Short-Term Memory (LSTM), Gated Recurrent Unit 

(GRU), and Bidirectional LSTM (BiLSTM) models performed well, particularly in balancing precision and 

recall, suitable for sequential dependencies in genomic data. Hybrid models combining CNNs and RNNs 

underperformed, indicating the need for careful optimization to avoid overfitting and improve generalizability. 

The research emphasizes selecting the appropriate model based on task requirements: CNNs for high precision 

and RNNs for long-range dependencies. It also addresses challenges with complex models, such as data demands 

and tuning difficulties. Identified limitations, including overfitting and training challenges, point to future 

research areas like improving model robustness, exploring advanced data encoding methods, and increasing 

training data diversity to enhance deep learning models in genomic research. 
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