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Abstract—The classification of DNA sequences using deep learning models offers promising avenues for advancements in
genomics and personalized medicine. This study provides a comprehensive evaluation of several deep learning architectures,
including Convolutional Neural Networks (CNNs), Long Short-Term Memory networks (LSTMs), Gated Recurrent Units
(GRUs), Bidirectional LSTMs (BiLSTMs), and hybrid models combining CNNs with various recurrent networks, to classify
human DNA sequences into functional categories. We employed a dataset of approximately 100,000 labeled sequences,
ensuring a balanced representation across seven distinct classes to facilitate a fair comparison of model performance. Each
model was assessed based on accuracy, precision, recall, F1 score, and Area Under the Receiver Operating Characteristic
Curve (AUC-ROC). The CNN model demonstrated superior accuracy (74.86%) and the highest AUC (94.64%), indicating its
effectiveness in capturing spatial patterns within sequences. LSTM and GRU models showed commendable performance,
particularly in balancing precision and recall, suggesting their capability in managing sequential dependencies. However,
hybrid models did not perform as expected, showing lower overall metrics, which highlighted challenges in model integration
and complexity management. The findings suggest that while CNNs excel in feature extraction, sequence-based models like
LSTMs and GRUs provide valuable capabilities in capturing long-range dependencies, essential for comprehensive genomic
analysis. The study underscores the need for optimized hybrid models and further research into model robustness and
generalizability.

Keywords: Deep Learning; DNA Classification; Convolutional Neural Networks; Recurrent Neural Networks; Genomic
Data Analysis

1. INTRODUCTION

The exploration of the human genome has continually reshaped our understanding of biology and medicine,
offering unparalleled insights into the genetic bases of diseases and individual traits [1]-[3]. As genomic
technologies have advanced, notably through the introduction of next-generation sequencing, the scientific
community now has access to data of unprecedented volume and complexity [4]. This revolution has not only
opened new avenues of research but has also introduced significant computational challenges [5]. The effective
interpretation and classification of vast DNA sequences, crucial for advancements in genetic research and
clinical applications, have thus become paramount tasks within the field of bioinformatics [6]. Historically, the
analysis of genomic data has been dominated by traditional bioinformatics techniques that include sequence
alignment, gene prediction, and the identification of regulatory elements [7]. These methods have been
instrumental in early genomic discoveries and have provided a basic framework for understanding genetic
structures [8]. However, they often require extensive manual effort to extract meaningful information and are
typically constrained by the computational resources needed to process large datasets [9]. As the scale of
genomic data expands, these traditional approaches are increasingly inadequate, limited by their scalability and
sensitivity in detecting complex genetic variations [10].

In response to these limitations, there has been a significant shift toward employing machine learning
techniques, which offer more sophisticated methods for extracting patterns and predicting phenotypic outcomes
from genomic data [11]. Among these, deep learning has emerged as particularly transformative, driven by its
success in other data-intensive domains like image recognition and natural language processing [12]. Deep
learning models, especially Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs),
including Long Short-Term Memory networks (LSTMs) and Gated Recurrent Units (GRUS), have been adapted
to capture the spatial and sequential patterns within DNA sequences, outperforming traditional models in
accuracy and efficiency [13]-[15]. Despite these advancements, the integration of deep learning into genomic
research faces significant challenges [16]. The primary issue is the interpretability of these models. The ability to
understand and explain the decisions made by deep learning algorithms is crucial, particularly in genomics,
where the biological relevance of predictions needs to be clear for them to be clinically and scientifically useful
[17]. Additionally, there remains a substantial gap in the ability to integrate multimodal genomic data:
combining genomic, transcriptomic, and proteomic data, in order to form comprehensive models that can
navigate the complexities of human biology [18]-[20].

This research aims to tackle these pressing issues by conducting a thorough evaluation and comparison of
several advanced deep learning architectures, specifically CNN, LSTM, GRU, and their hybrid forms. Our study
focuses on their application in classifying human DNA sequences into predefined categories, assessing not only
their performance but also their practical utility in real-world genomic tasks. The goal is to identify which
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models most effectively balance accuracy with interpretability and can handle the diversity and complexity of
genomic data. This study makes several pivotal contributions to the fields of computational biology and
genomics. It benchmarks the effectiveness of various deep learning models against traditional genomic
classification methods, providing a clear comparison in terms of performance metrics such as accuracy,
precision, and recall. Importantly, it also advances efforts to enhance the transparency and interpretability of
these models, proposing new approaches that could make deep learning more accessible and understandable to
genomic researchers and practitioners. Following this introduction, the article meticulously discusses details the
experimental design, data preprocessing strategies, and the specific architectures of the deep learning models
employed. The subsequent sections present a comprehensive analysis of the results, evaluating the models’
performance across various datasets and conditions. The discussion integrates these findings with broader
genomic research themes, considering their implications for future studies and clinical applications. Finally, the
conclusion summarizes the study's key contributions, acknowledges its limitations, and outlines prospective
avenues for further research.

2. RESEARCH METHODOLOGY

This research methodology employs a systematic approach to explore and validate the capabilities of various
deep learning architectures in the classification of complex DNA sequences. By combining meticulous data
preparation, innovative model architecture exploration, and rigorous training and validation processes as
presented in the figure 1, the study aims to advance genomic research and provide insights into the genetic
sequences’ underlying biological processes.

Download dataset of human DNA sequences; T

Research Methodology for DNA Sequence Classification

™) Annotate sequences with class labels;
(\Data R G PR J_" Ensure dataset balance and accessibility;

Aim for reproducibility and collaborative potential;
- ~, I Convert DNA sequences to numerical format using ene-het encoding; T

( Data Preprocessing == Standardize sequence lengths with padding or truncation;
- " | Apply data augmentation techniques like insertion, deletion, and substitution;

; . Implement various deep learning architectures;
; . __ | Explore CNN, LSTM, GRU, and hybrid madels;
( dadelchitectirel=ndleelection) < Configure CNNs fer spatial pattern reccegnition;

Use RNNs (LSTM, GRU] for medeling sequential dependencies:

p ~ ! : s ; !
L Model Training and validation = split data into training, validation, and test sets;
/ l Implement early stopping and validation lass monitoring;

y I Employ Adam optimizer and categorical cross entropy loss;
Caleulate performance metrics: accuracy, precision, recall, F1 score, AUC-ROC;
2.1 Data Collection and Description

Figure 1. Research Methodology Activity Diagram

In this study, we utilized a curated dataset of human DNA sequences that play a critical role in advancing our
understanding of genetic function and structure, and the dataset can be downloaded from [21]. This dataset is
characterized by a rich variety of categories, each corresponding to different gene functions or structural
characteristics, highlighting the complex nature of human genetic makeup. The selection of these sequences was
guided by the objective to cover a broad spectrum of genetic functions, thereby providing a comprehensive base
for the analysis. The data for this research was meticulously sourced from a publicly available genomic database.
The choice of a public database was strategic, aimed at ensuring that our study's findings are reproducible, and
that the dataset can be readily accessed by other researchers in the field. This openness is pivotal in fostering a
collaborative environment where methodologies and discoveries can be easily validated and built upon by the
scientific community.

Each sequence within our dataset comes annotated with a specific label, identifying it as belonging to one
of seven distinct classes. These classes are designed to represent the diverse functions and characteristics of the
sequences, thus enabling a structured approach to the classification task. Such labeling is crucial as it directly
supports the supervised learning techniques employed in our analysis, providing a clear target for the predictive
modeling. The dataset encompasses approximately 100,000 sequences, which have been carefully balanced
across the different classes. This balance is crucial to ensure that the predictive models developed in the study
are not biased toward the more frequently represented classes. Maintaining this equilibrium allows for a more
accurate and generalizable understanding of how the models perform, making the outcomes of the research
applicable to a wider range of genetic data. The structured and balanced nature of this dataset not only facilitates
a more effective training process but also enhances the validity of the comparison across different machine
learning models. This comprehensive approach to data collection and categorization establishes a robust
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foundation for exploring the capabilities of deep learning technologies in genetic sequence analysis, setting the
stage for insightful discoveries and methodological advancements in the field of genomics.

2.2 Data Preprocessing

The data preprocessing stage is critical in preparing the raw DNA sequences for effective analysis using deep
learning models. The DNA sequences, inherently composed of the nucleotides represented by the characters A,
T, C, and G, require conversion into a numerical format that deep learning architectures can process. This
transformation was achieved through the method of one-hot encoding. In this technique, each nucleotide is
converted into a binary vector that uniquely represents it across four dimensions. For instance, adenine (A) is
encoded as [1,0,0,0], thymine (T) as [0,1,0,0], cytosine (C) as [0,0,1,0], and guanine (G) as [0,0,0,1]. This
encoding not only simplifies the representation of genetic information but also prevents any ordinal relationships
between the bases, which could potentially bias the learning process. Further, given the intrinsic variability in
sequence length within the dataset, it was necessary to standardize the lengths of the sequences to create
uniformity in the input size for the models as presented in the equation (1). To achieve this, all sequences were
adjusted to a fixed length of 1000 nucleotides. Sequences that were shorter than this threshold were padded with
zeros at their ends, ensuring that they met the required length without altering their original genetic information.
Conversely, sequences exceeding 1000 nucleotides were truncated, a compromise to maintain consistency across
the dataset while still capturing the most significant portion of the genetic data.

g(s) = s @10,0,..,01&"{if }Is| < Ls[1:L]&"{if }|s| > L 1)

Where ( @) denotes concatenation and (|s|) represents the length of the sequence (s ). Additionally, to
bolster the robustness of the predictive models and to mitigate the risk of overfitting, we employed various data
augmentation techniques. These techniques are particularly pivotal in genomic data analysis due to the frequent
occurrence of small mutations in real-world scenarios. Our augmentation strategies included the random
insertion, deletion, and substitution of nucleotides within the DNA sequences as presented in the equation (2) —
(4) respectively. By introducing these modifications, the models were trained not only on the original data but
also on potential variations of it, enhancing their ability to generalize from the training data to new, unseen
genetic sequences. This approach is crucial for developing models that are resilient and can accurately interpret
genetic data even when it deviates slightly from the examples seen during training. Together, these preprocessing
steps: sequence encoding, padding, and augmentation, form a comprehensive framework that ensures the DNA
sequences are optimally prepared for the subsequent stages of model training and validation. This preparation is
essential for leveraging the full capabilities of deep learning in decoding the complex patterns embedded within
genetic data, thereby paving the way for more accurate and reliable genetic sequence classification.

I1(s,p,x) =s[1l:p] B [x] D s[p + 1:]s]] 2
D(s,p) =s[l:p— 1] @D s[p + 1:|s]] 3)
SG,p,x)=s[l:p—1] B [x] & s[p + 1:]s]] 4)

2.3 Model Architecture and Selection

In this study, we investigated the capabilities of various deep learning architectures to ascertain their suitability
and efficiency in classifying complex DNA sequences. The architectures were carefully selected to explore
different dimensions of sequence analysis, ranging from the identification of spatial patterns to the modeling of
sequential dependencies. The first architecture we explored was the Convolutional Neural Network (CNN),
renowned for its prowess in pattern recognition within two-dimensional data. We adapted the CNN for one-
dimensional sequence data, configuring it to detect and interpret the spatial hierarchies intrinsic to DNA
sequences. The architecture of the CNN included multiple convolutional layers that are designed to capture
patterns and motifs indicative of the sequence’s functional roles. These layers were interspersed with max
pooling layers that help reduce the dimensionality of the data, thus simplifying the information without losing
critical features. Following these convolutional and pooling layers, a flattening layer was introduced to transform
the pooled features into a flat array for subsequent processing. The architecture culminated in several dense
layers, which serve to interpret these features and execute the final classification based on the patterns
recognized by the convolutional layers.

Next, we implemented the Long Short-Term Memory (LSTM) network, a type of recurrent neural
network (RNN) specifically designed to address the challenge of learning long-range dependencies. Recognizing
the sequential nature of DNA—where the significance of a nucleotide often depends on its context within the
sequence—LSTM models are particularly suited for this analysis. The LSTM layers are adept at preserving
information over long sequences, potentially capturing complex genetic regulations that are not immediately
adjacent within the sequence. Dense layers followed the LSTM layers to classify the sequences into their
respective categories based on the learned features. Additionally, we explored the Gated Recurrent Unit (GRU),
another variant of RNN with a similar purpose but optimized to be more efficient than the LSTM. The GRU
simplifies the LSTM architecture by using fewer parameters and modifying the gating mechanisms that regulate
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information flow within the unit. This efficiency does not significantly compromise the model's performance,
making GRUs an attractive option for sequence analysis where computational resources or data availability
might be limited.

To leverage the strengths of both CNNs and RNNs, we also experimented with hybrid models that
combine these architectures, specifically, CNN-LSTM and CNN-GRU models. These hybrid models utilize
convolutional layers at the initial stages to process the sequence and identify local patterns or motifs. The
features extracted by the CNN layers are then fed into RNN layers, either LSTM or GRU, which integrate these
features across the entire sequence. This combination allows the models to benefit from the local feature
extraction capabilities of CNNs and the sequence modeling strengths of RNNSs, providing a robust framework for
understanding both the immediate and contextual implications of genetic sequences. Each of these models was
chosen and designed with the aim of unraveling different aspects of the DNA sequences, from immediate spatial
relationships to long-term sequential dependencies, offering a comprehensive approach to understanding the
complexities of genetic data. Through this diverse selection of model architectures, the study aims to identify the
most effective strategies for DNA sequence classification, contributing to advancements in genomic research and
applications.

2.3.1 CNN Method

A CNN adapted for one-dimensional sequence data utilizes a convolution operation to extract spatial features
from the sequence. This operation is defined mathematically in equation (5).

fx) = 0(2?:1 Wi Xpti-1 T b) (%)

Where (x) is the input sequence, (w) represents the weights of a convolutional filter of size (k), (b) is
the bias term, and (o) is a non-linear activation function such as the rectified linear unit (ReLU). The filter slides
over the sequence, computing a dot product at each position, which captures local dependencies within the
sequence. This convolutional process is repeated using multiple filters to capture various aspects of the sequence
information, leading to a feature map for each filter. Besides on this equation, max pooling is a down-sampling
operation used in CNNs to reduce the dimensionality of feature maps, thus decreasing computational
complexity, and enhancing the detection of dominant features. The operation is defined by equation (6).

m(x) = max(xj,xj+1' ---'xj+p-1) ©

Where (x) represents a segment of the output from the convolutional layer and (p) is the pooling size.
The max pooling operation processes each segment of the feature map, taking the maximum value within a
window of predefined size (p). This method helps in making the representation more abstract and invariant to
small shifts and distortions in the sequence, which is beneficial for capturing the most significant features
without retaining unnecessary detail.

2.3.2 LSTM Method

Long Short-Term Memory networks (LSTMs) are a specialized kind of Recurrent Neural Network (RNN) that
can learn and remember over long sequences of inputs. LSTMs are particularly useful in applications where the
learning of long-range temporal dependencies is critical, such as in language modeling, speech recognition, and
biological sequence analysis. Unlike standard RNNs, LSTMs include mechanisms called gates that regulate the
flow of information. These gates can add or remove information to the cell state, a memory-like feature of the
network. This functionality helps the LSTM to avoid the long-term dependency problem typical of traditional
RNNSs. An LSTM unit is composed of the four components.

Firstly, Cellstate((C.)), this acts as the 'memory' of the LSTM unit and carries relevant information
throughout the processing of the sequence. Changes to the cell state are carefully regulated by structures called
gates. Secondly, forget gate ((f;)), this gate decides what information is to be discarded from the cell state. It
looks at the previous output (h,_,) and the current input (x;), and applies a sigmoid function to produce a range
between 0 and 1 for each number in the cell state (C._;). A number of 1 represents “completely keep this” while
a 0 represents “completely get rid of this”. Furthermore, Input gate ((i;)), the input gate decides what new
information is added to the cell state. It operates in two parts, firstly, a sigmoid layer and a tanh layer. The
sigmoid layer decides which values will be updated, and the tanh layer creates a vector of new candidate values,
(C,), that could be added to the state. Lastly, output gate ((o,)), the output gate decides what the next hidden
state (h,) should be. The hidden state contains information about previous inputs. The information at the current
cell state(C,) influences the output, which is filtered by the output gate. The tanh of the cell state is multiplied by
the output of the sigmoid gate, so that only the parts of the cell state that are decided to be output are actually
produced. The LSTM transitions can be mathematically described by the equation (7) — (12).

fe = o(Wg- [hy — 1, %] + bp) 7
o(W - [heq,x¢] + by) 3)

I
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C, = tanh(W; - [he_q,%X¢] + bc) 9)
Co= f, * Cuqy + i * & (10)
o, = o(W_o - [h_{t—1},x t] + b_o) (11)
h, = o; * tanh(C,) (12)

In these equations, ( o) denotes the sigmoid function, which is used in the gate mechanisms to restrict
values between 0 and 1, effectively acting as a filter. (tanh) provides a way to regulate the information flow
within the unit, normalizing the values between -1 and 1. The element-wise multiplication () indicates that the
operations are conducted on each corresponding element of vectors independently. This intricate coordination of
gates and states allows the LSTM to mitigate the gradient vanishing problem typical of traditional RNNSs,
enabling it to learn from data where inputs are separated by long time intervals.

2.3.3 GRU Method

The Gated Recurrent Unit (GRU) is an adaptation of the more complex LSTM network that simplifies and
optimizes the recurrent formula while preserving the capability to learn long dependencies in sequence data.
GRUs have been effectively used in various tasks like language modeling, machine translation, and sequence
prediction due to their efficiency and simplicity. A GRU modulates the flow of information without separate
memory cells and is generally less computationally intensive than LSTMs due to having fewer gates.

A GRU has two gates, firstly, update gate ((z,)), this gate decides how much of the past information
(from previous time steps) needs to be passed along to the future. It effectively determines how much of the
previous hidden state should contribute to the current hidden state, balancing between the old information and
new candidates. Secondly, reset gate, ((r;)), this gate decides how much of the past information to forget. It can
be seen as setting the state to ignore the previous hidden state and completely reset with the new input, allowing
the model to drop any information that is no longer relevant. The operations within a GRU are described by the
equation (13) — (16).

z, = o(W, - [he_q, %] + by) (13)
re = o(W, - [hy_q,%x¢] + b,) (14)
hy = tanh(W - [r; * he_y, %] + b) (15)
hy=(1—2)*h_; +z *h (16)

Each component functions as follows, ((z.)), it controls the degree to which the GRU unit updates its
activation, or hidden state. The gate is a vector that defines the proportion of the past hidden state that
contributes to the candidate state. It applies a sigmoid function ( ¢) to constrain its output to the range [0,1],
acting as a weight between retaining the old state and adopting the new state. Secondly, Reset gate ((r;)), it
determines how much of the past information to discard, allowing the model to decide if and how to reset the
hidden state given the new input. Like the update gate, it employs the sigmoid function to provide outputs
between 0 and 1. Thirdly, candidate hidden state ((E})), it is formed by blending the previous hidden state and
the current input while being modulated by the reset gate. This candidate state proposes how to combine new
input information with past memory. Thirdly, final hidden state update ((h;)), itis a linear interpolation between
the old state and the new candidate state, controlled by the update gate. This step decides the amount of past
information to keep and how much of the new candidate state should be used to update the current state. The
GRU's architecture allows it to perform similarly to the LSTM with fewer parameters, making it computationally
more efficient and easier to modify and maintain. These dynamics make the GRU particularly useful in tasks
where model complexity and training time are critical factors.

2.3.4 Hybrid Method

Hybrid models that combine Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNSs)
leverage the strengths of both architectures to process sequential data effectively. The CNN layers initially
process the input sequence to extract local feature representations, which are then passed on to the RNN layers—
either Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU), to model temporal dependencies and
sequence dynamics. The hybrid architecture typically operates as presented in the equation (17).

y: = RNN(CNN(x,)) 17)

Where (x;) represents the input sequence at time (t). The CNN component processes this input to
capture spatial hierarchies and local contextual features within the data. This operation is crucial for
understanding complex patterns in data, such as motifs in DNA sequences or features in audio signals. The CNN
layers consist of multiple convolutional and pooling layers. Each convolutional layer applies several filters to the
input, capturing various aspects of the input data through operations in the equation (18).
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This results in feature maps that highlight important features of the input data, reducing spatial
dimensions but retaining critical information. These feature maps are then typically passed through pooling
layers, which reduce the dimensionality and computational complexity while maintaining the most significant
features. The output from the CNN, which consists of condensed feature representations, is then fed into an
RNN. This part of the model captures temporal dependencies as presented in the equation (19).

h, = RNN(h,_4, c;) (19)

Where (h,) is the hidden state at time (t), (h,_,) is the hidden state from the previous time step, and (c;)
is the current feature input from the CNN. Depending on the specific architecture, (RNN) can be either an
LSTM or a GRU. The LSTM or GRU layers process these inputs to model long-range dependencies, making use
of their gating mechanisms to maintain or forget information across longer sequences. The final output (y,) of
the hybrid model is typically obtained after the RNN layer has processed all the temporal information. This
output can then be used for various tasks such as sequence classification, prediction, or feature generation. The
integration of CNN and RNN layers allows these models to not only recognize complex patterns through
convolutional processing but also to understand sequence dynamics, making them extremely powerful for tasks
involving sequential data with important spatial and temporal components. This comprehensive approach
harnesses the localized feature extraction capabilities of CNNs and the sequential data processing strengths of
RNNs, providing a robust framework for understanding both immediate and contextual implications of
sequences. The synergy between CNN and RNN components in hybrid models offers enhanced learning
capabilities over using either architecture alone, especially in complex applications like genomic sequence
analysis, speech recognition, and video processing.

2.4 Model Training and Validation

The process of training and validating the models implemented in this study was meticulously designed to
optimize performance and ensure robustness. Each model utilized the Adam optimizer, a choice influenced by its
adaptive learning rate capabilities that help in efficiently converging to the optimal set of weights. The optimizer
adjusts the learning rate during training, which is particularly beneficial when dealing with complex datasets
such as DNA sequences, where the gradient landscape can be highly variable. The loss function selected for this
study was categorical cross entropy, which is commonly used in multi-class classification tasks. This choice is
apt for our study since it measures the disparity between the predicted probabilities and the actual class output,
thereby providing a robust mechanism for minimizing prediction errors across multiple classes. To rigorously
validate the models and prevent overfitting: a common issue in machine learning tasks involving complex
datasets: the dataset was carefully partitioned into a training set and a test set, with 80% of the data allocated for
training and the remaining 20% held out for testing. Further refinement of the training process involved setting
aside 10% of the training set to function as a validation set. This validation set played a crucial role during
training, enabling continuous monitoring and tuning of the models' parameters. Early stopping was another
critical component of our training methodology. This technique involves terminating the training process if the
validation loss fails to improve after a certain number of epochs. By implementing early stopping, we mitigated
the risk of overfitting, ensuring that the models maintained a generalizable performance rather than merely
excelling on the training data.

The evaluation of each model’s performance was conducted using several critical metrics, which together
provide a rounded assessment of each model's capabilities. Accuracy was the primary metric, indicating the
proportion of total predictions that were correct. This metric, while straightforward, offers a quick snapshot of
model effectiveness but can sometimes be misleading, particularly in datasets where class distributions are
imbalanced. To address this, precision and recall were also used as key metrics. Precision measures the accuracy
of the positive predictions made by the model, while recall assesses the model's ability to identify all relevant
instances per class. These metrics are particularly vital in scenarios where the cost of false negatives or false
positives is high, such as in medical or genomic studies. The F1 score, which is the harmonic mean of precision
and recall, was also calculated. This metric is crucial because it provides a balance between precision and recall,
offering a single measure that evaluates the model's accuracy while considering both the false positives and false
negatives. Additionally, the Area Under the Receiver Operating Characteristic Curve (AUC-ROC) was
employed. This metric is invaluable as it evaluates the model’s performance across various classification
thresholds, rather than at a fixed point, thereby providing insights into the effectiveness of the model under
different conditions. Together, these metrics facilitated a comprehensive evaluation of the models, ensuring that
the developed models are not only accurate in predicting DNA sequence classes but are also reliable and
effective across various levels of decision thresholds. This thorough approach to model validation and
performance evaluation underpins the credibility of our findings and supports the potential application of these
models in real-world genomic sequence analysis.

The Adam optimizer is used for its adaptive learning rate capabilities, crucial for handling complex data
landscapes as presented in equation 20.
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Oy = B — 77, (20)

Where, 6 represents the parameters to be optimized, n is the learning rate, 71; and ¥; are bias-corrected
first and second moment estimates, respectively. The symbol of € is a small scalar added to the denominator to
improve numerical stability. The loss function used is categorical cross entropy, which is defined in equation
(22).

L =—3Xf,ylog(p) (21)

Where, y; is the actual label (0 or 1) indicating whether class i is the correct classification, p; is the
predicted probability of class i and C is the number of classes. Furthermore, the process of validation loss
monitoring and early stopping are implemented as presented in the equation (22).

Stop if Lyg;(e) > Lyq (e —n) for n consecutive epochs (22)

Where L, (e) is the validation loss at epoch e. Performance is assessed using several metrics such as
accuracy, precision, recall, F1 score and AU-ROC as presented from the equation (23) — (27).

ACCuracy — number ofcorrec-:t ;_)redictions (23)
total predictions
Precision = — "
TP+FP
Recall = —— "
TP+FN
F1 Score = 2 . LrecisionRecall o
Precision+Recall
AUC-ROC = [} TPR(t) dFPR(t) o

Where, TP is true positives, FP is false positives, FN is false negatives. In addition, TPR(t) is the true
positive rate at threshold t, and FPR(t) is the false positive rate.

3. RESULT AND DISCUSSION
3.1 Results

As presented in the table 1, the Convolutional Neural Network (CNN) model demonstrated the highest overall
accuracy among the models tested, with a score of 74.86%. It also achieved a notably high Area Under the Curve
(AUC) of 94.64%, indicating its strong capability in distinguishing between the different classes of DNA
sequences. The precision was particularly high at 89.18%, suggesting that the predictions made by the CNN
were highly reliable. However, its recall of 69.34% points to some challenges in identifying all relevant instances
of each class, which slightly impacted its F1 score, settling at 78.00%. The Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) models displayed similar patterns in performance, with accuracies of 73.95%
and 72.63% respectively. The LSTM model had a slightly better balance between precision and recall, which is
reflected in its F1 score of 76.46%, compared to the GRU’s 73.42%. This suggests that while LSTM managed
long-range dependencies in the sequences slightly more effectively than GRU, both struggled with
comprehensively identifying all class-relevant sequences, as evidenced by their lower recall rates.

The Bidirectional LSTM (BiLSTM) model, designed to capture sequence information in both forward
and reverse orientations, recorded an accuracy almost equivalent to the LSTM model but with a slightly higher
AUC of 92.55%. However, its precision and recall rates led to a lower F1 score of 75.46%, indicating some
limitations in balancing the detection of relevant instances and the precision of classifications. Hybrid models
combining CNN with recurrent architectures—CNN_LSTM, CNN_GRU, and CNN_BiLSTM—showed a
decrease in performance compared to their standalone counterparts. This was unexpected as hybrid models are
typically anticipated to leverage the strengths of both CNNs (for spatial feature extraction) and RNNs (for
sequence dependency capture). The CNN_LSTM model had an accuracy of 59.47%, the lowest among the
hybrids, with a corresponding low recall of 46.60%, significantly affecting its F1 score (57.56%). Similarly, the
CNN_GRU and CNN_BIiLSTM models also underperformed, with accuracies of 55.71% and 61.10%
respectively. These results suggest that the integration of these architectures did not synergize as anticipated for
this dataset, possibly due to the added complexity overwhelming the models’ ability to generalize from the
training data.

The results highlight several key insights into the application of deep learning models for DNA sequence
classification. The superior performance of the standalone CNN model underscores its effectiveness in capturing
essential features from biological sequence data, likely due to its ability to detect complex patterns and motifs
crucial for genomic classification. The slight underperformance of LSTM and GRU models relative to CNN
might be attributed to the intrinsic challenges associated with processing very long sequences, where important
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information could be diluted or lost over long distances. Although designed to mitigate such issues, the practical
limitations of these models in handling the extensive variability and complexity of genomic data could have
restrained their effectiveness. The unexpected lower performance of hybrid models suggests that while
theoretically advantageous, the practical implementation and tuning of these models are critical. Overfitting,
difficulties in optimizing, or the inefficient merging of feature sets from CNN and RNN layers could contribute
to their diminished effectiveness.

3.2 Trade-off Analysis

In this study, the performance trade-offs among various deep learning models used for DNA sequence
classification present a complex landscape of strengths and weaknesses. Analyzing these trade-offs is crucial for
understanding the suitability and applicability of each model type in real-world genomic research settings. Here,
we explore the trade-offs related to accuracy, precision, recall, F1 score, and AUC, based on the results obtained.

The standalone CNN model emerged as the top performer in terms of accuracy and AUC, suggesting its
superior ability to handle the spatial complexities inherent in DNA sequences. CNN's design allows it to capture
essential motifs and patterns efficiently, a critical feature for genomic sequence analysis. However, the model's
simplicity in not accounting for long-range dependencies, which are typical in sequential data, presents a trade-
off. While CNNs are excellent at identifying local patterns within the data, they might miss broader contextual
information that models like LSTM or GRU can capture. This limitation could be significant depending on the
specific requirements of the genomic classification task, such as in scenarios where the functional implications
of a sequence depend heavily on distant elements.

The divergence between precision and recall across the models is another key consideration. CNN
showed high precision but lower recall, indicating a strong ability to correctly label true positive cases but at the
expense of missing other relevant cases. This trade-off is particularly crucial in settings like medical diagnostics,
where failing to identify a condition (low recall) can have more severe consequences than incorrectly identifying
one (low precision). In such cases, a model that provides a more balanced precision and recall, as seen in the
LSTM and GRU, might be preferable, even if it means sacrificing some accuracy. Regarding the robustness of
the models, as indicated by the AUC metric, the CNN again showed superior performance, demonstrating its
effectiveness in classifying sequences correctly across various decision thresholds. This robustness is beneficial,
especially in clinical settings where threshold values can be adjusted to meet specific diagnostic criteria.
However, the trade-off with CNN’s structure is its potential oversight of long-range dependencies which are
better handled by sequence models like LSTM or GRU.

The performance of the hybrid models, which combine the strengths of CNNs and RNNs, was
unexpectedly lower than the standalone models. This outcome suggests a significant trade-off related to the
increased complexity and the dynamics of training such models. Hybrid models, while theoretically
advantageous due to their integrated approach in capturing both local and long-range features, require careful
tuning and potentially more extensive training data to perform optimally. Their complexity can be a major
drawback, particularly where computational resources or labeled data are limited. Another important
consideration is computational efficiency. For instance, the GRU model, which generally requires fewer
parameters than LSTM, offers greater efficiency, which is crucial in resource-constrained environments.
However, this efficiency might come at the cost of reduced performance capabilities, as reflected in the slightly
lower metrics compared to LSTM. The decision to use a more efficient but potentially less capable model or a
more demanding but robust model depends on the specific operational context, such as the availability of
computational resources and the need for real-time analysis.

3.3 Constraints and Limitations

The performance outcomes of the various deep learning models applied in our study for DNA sequence
classification reveal significant insights while also highlighting inherent constraints and limitations within the
models and experimental setup. Understanding these limitations is crucial not only for interpreting the results
accurately but also for guiding future research directions. The Convolutional Neural Network (CNN), which
exhibited high precision, showed a comparatively lower recall. This indicates that while the model is reliable
when it predicts a sequence class correctly, it fails to identify a significant number of relevant sequences. Such a
limitation could stem from the CNN’s primary focus on local patterns, potentially overlooking the wider
contextual dependencies crucial for identifying some classes. Additionally, despite the high AUC indicating
good generalization across different thresholds, there might still be concerns regarding the model's potential to
overfit to patterns that are not universally applicable across different genomic contexts.

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models, designed to manage
sequential data and long-range dependencies, also showed a more balanced approach between precision and
recall. However, they too exhibited limitations in capturing all relevant instances, as reflected in their lower
recall rates. This could be attributed to the inherent difficulties in managing long-range dependencies effectively,
despite these models' design intentions. The complexity of these models and the associated training challenges,
such as issues with vanishing or exploding gradients, might also contribute to their slightly lower performance
metrics. The Bidirectional LSTM (BiLSTM) was expected to improve upon standard LSTM by capturing
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information from both forward and reverse directions. However, the improvements in recall and overall accuracy
were not as significant as anticipated, which might indicate limitations in how effectively the model integrates
bidirectional information. Alternatively, this may reflect an inherent limitation in the data where additional
context from the reverse direction is less informative.

All hybrid models, including CNN_LSTM, CNN_GRU, and CNN_BILSTM, demonstrated lower
performance metrics compared to their standalone counterparts. This suggests potential issues with how features
extracted by CNN layers are being integrated and utilized by the subsequent recurrent layers. It may also reflect
an increase in model complexity that leads to difficulties in training effectively, potentially leading to overfitting
where the model complexity with dual architectures does not generalize well on unseen data. The models were
all trained and tested on a single dataset, which may limit the generalizability of the findings to other genomic
datasets or real-world scenarios. Variations in sequence length, complexity, or class distribution in other datasets
might yield different results. Additionally, the one-hot encoding used for DNA sequences provides a basic form
of input that might not capture all nuances or biological relevancies of the sequences. Exploring more
sophisticated encoding techniques could potentially enhance model performance. Moreover, while the study
utilized a comprehensive set of metrics to evaluate model performance, the reliance on aggregate metrics like
accuracy and F1 score might mask performance disparities across classes, especially if some classes are
underrepresented or inherently more complex to classify.

Table 1. Deep Learning Results

Model Accuracy Precision Recall F1Score AUC
CNN 0.7486 0.8918  0.6934 0.78 0.9464
LSTM 0.7395 0.8667 0.6856 0.7646  0.9235
GRU 0.7263 0.8908 0.6258 0.7342 0.9181
BIiLSTM 0.7397 0.8881 0.6575 0.7546  0.9255

CNN_LSTM 0.5947 0.7628  0.466  0.5756 0.8619
CNN_GRU 0.5571 0.7607  0.4025 0.5239 0.8422
CNN_BILSTM 0.611 0.769  0.5039 0.6042 0.8696

4. CONCLUSION

This study assessed various deep learning models for classifying human DNA sequences, evaluating their
performance across multiple metrics. The Convolutional Neural Network (CNN) achieved the highest accuracy
and AUC, excelling in capturing spatial features. Long Short-Term Memory (LSTM), Gated Recurrent Unit
(GRU), and Bidirectional LSTM (BIiLSTM) models performed well, particularly in balancing precision and
recall, suitable for sequential dependencies in genomic data. Hybrid models combining CNNs and RNNs
underperformed, indicating the need for careful optimization to avoid overfitting and improve generalizability.
The research emphasizes selecting the appropriate model based on task requirements: CNNs for high precision
and RNNSs for long-range dependencies. It also addresses challenges with complex models, such as data demands
and tuning difficulties. Identified limitations, including overfitting and training challenges, point to future
research areas like improving model robustness, exploring advanced data encoding methods, and increasing
training data diversity to enhance deep learning models in genomic research.
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