Implementasi Text Mining Dalam Penentuan Kinerja Layanan Antara Grab dan Gojek Berdasarkan Opini Masyarakat Menggunakan LDA


  • Tiwi Syapira * Mail Universitas Islam Negeri Sumatera Utara, Medan, Indonesia
  • Ilka Zufria Universitas Islam Negeri Sumatera Utara, Medan, Indonesia
  • (*) Corresponding Author
Keywords: Topic; Gojek; Grab; LDA; Service

Abstract

Public transportation is currently based on applications and the internet, so it is called online transportation. Grab and Gojek are two online transportation service providers who want to provide the best service. Users provide responses, experiences, criticism and suggestions via Twitter. This research will use the LDA algorithm to map topics that users frequently discuss regarding Gojek and Grab. Latent Dirichlet Allocation (LDA) is an unsupervised learning algorithm used to detect topics in a collection of text documents. LDA assumes that each document consists of a mixture of several topics, and that each topic consists of a probability distribution over words. LDA works by modeling the generative process of documents. This process begins by selecting a topic for the document, then selecting words from that topic. The probability of selecting certain topics and words is determined by parameters learned from the data. Data was obtained via Twitter with the keywords "#grabid" and "#gojekindonesia". From the research results, it was found that the best topic mapping results for Gojek objects were 2 topics, namely promotions and orders. Meanwhile, Grab objects are divided into 4 topics, namely communication, transactions, orders and orders

Downloads

Download data is not yet available.

References

E. Hernawan and Andy, “Analisis Faktor- Faktor Yang Mempengaruhi Pelanggan Gojek Dan Grab Online Di Jakarta,” J. Ekon. Dan Bisnis - Vol. 17. No. 1, vol. 17, no. 1, pp. 1–13, 2019.

W. San Taslim, “Analisis preferensi konsumen terhadap jasa angkutan online di Pontianak (Studi kasus: Gojek vs Grab),” Obis, vol. 3, no. 1, pp. 13–18, 2020.

A. Alfonsius, “Pelayanan Transportasi Online Di Era New Normal,” J. Account. Manag. Innov., vol. 4, no. 2, pp. 91–100, 2020.

J. Wahani, J. D. D. M. Poluan, and J. Grace, “J . Wahani ., J . D . D . Massie ., J . G . Poluan DI KOTA MANADO ANALYSIS OF SERVICE QUALITY COMPARISON BETWEEN GO-JEK AND GRAB IN MANADO CITY Oleh : Jurnal EMBA Vol . 9 No . 3 Juli 2021 , Hal . 1762- 1774 J . Wahani ., J . D . D . Massie ., J . G . Polu,” Anal. PERBANDINGAN KUALITAS PELAYANAN ANTARA GO-JEK DAN GRAB DI KOTA Manad., vol. 9, no. 3, pp. 1762–1774, 2021.

Y. Astutik and W. Suharso, “Evaluasi Kualitas Layanan Aplikasi Go-Jek Dan Grab Dengan Metode Ahp,” Univ. Muhammadiyah Jember, 2019.

I. Setyawan, “Kualitas Layanan Last-Mile Delivery : Studi Komparasi Dua Layanan Pesan-Antar Makanan,” Kualitas Layanan Last-Mile Deliv. Stud. Komparasi Dua Layanan Pesan-Antar Makanan, vol. 22, no. 3, pp. 2050–2060, 2022, doi: 10.33087/jiubj.v22i3.2692.

R. Septiani and N. Nurhadi, “Peran Mediasi Kepuasan Pelanggan Pada Pengaruh E-Service Quality, Persepsi Harga, Dan Promosi Penjualan Terhadap Loyalitas Pelanggan,” J. Fokus Manaj. Bisnis, vol. 10, no. 2, p. 249, 2020, doi: 10.12928/fokus.v10i2.2886.

Diana Khuntari, “Analisis Pengalaman Pengguna Aplikasi Gojek dan Grab dengan Pendekatan User Experience Questionnaire,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. April, pp. 275–286, 2022.

J. Waworundeng, G. Sandag, S. V. Ngeloh, and A. Lalong, “Analisis Tingkat Kepuasan Pelanggan terhadap Layanan Grab dan Gojek di Masa Pandemi Covid-19 Analysis of Customer Satisfaction Levels with Grab and Gojek Services during the Covid-19 Pandemic,” Cogito Smart J., vol. 8, no. 1, pp. 111–121, 2022.

K. R. Prilianti, “Implementation of Text Mining for Online Transportation Service Analysis with Factor Analysis,” Simantec, vol. 8, no. 2, pp. 1–9, 2020.

I. Aminudin and D. Anggraini, “Analisis Peringkat Top Brand Ojek Online Menggunakan Jejaring Sosial Percakapan Twitter,” J. Ilm. Inform. Komput., vol. 24, no. 2, pp. 88–104, 2019, doi: 10.35760/ik.2019.v24i2.2365.

A. A. Nabhan, B. Rahayudi, and D. E. Ratnawati, “Klasifikasi Tweets Masyarakat yang Membicarakan Layanan GoFood dan GoRide pada GoJek Dimedia Sosial Twitter Selama Masa Kenormalan Baru ( New Normal ) dengan Metode Naïve Bayes,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 7, pp. 3018–3025, 2021.

R. Sistem et al., “JURNAL RESTI Analisis Sentimen dan Pemodelan Topik Pariwisata Lombok,” vol. 1, no. 10, pp. 123–131, 2021.

M. Luvian chisni chilmi, “Latent dirichlet allocation (LDA) untuk mengetahui topik pembicaraan warganet twitter tentang omnibus law,” Univ. Islam Negeri Syarif Hidayatullah, pp. 1–131, 2021.

S. Styawati, N. Hendrastuty, and A. R. Isnain, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” J. Inform. J. Pengemb. IT, vol. 6, no. 3, pp. 150–155, 2021, doi: 10.30591/jpit.v6i3.2870.

I. Noor Kabiru and P. Kencana Sari, “Analisa Konten Media Sosial E-Commerce Pada Instagram Menggunakan Metode Sentimen Analysis Dan Lda-Based Topic Modeling (Studi Kasus: Shopee Indonesia) Analysis of Content Social Media E-Commerce in Instagram Using Sentiment Analysis and Lda Based Topic M,” e-Proceeding Manag., vol. 6, no. 1, p. 12, 2019.

B. B. Baskoro, I. Susanto, and S. Khomsah, “Analisis Sentimen Pelanggan Hotel di Purwokerto Menggunakan Metode Random Forest dan TF-IDF (Studi Kasus: Ulasan Pelanggan Pada Situs TRIPADVISOR),” INISTA (Journal Informatics Inf. Syst. Softw. Eng. Appl., vol. 3, no. 2, pp. 21–29, 2021, doi: 10.20895/INISTA.V3.

N. Novarian, S. Khomsah, and A. B. Arifa, “Topic Modeling Tugas Akhir Mahasiswa Fakultas Informatika Institut Teknologi Telkom Purwokerto Menggunakan Metode Latent Dirichlet Allocation Nathanael,” LEDGER J. Inform. Inf. Technol., vol. 2, no. 1, pp. 1–14, 2023.

Y. Matira, “Pemodelan Topik pada Judul Berita Online Detikcom Menggunakan Latent Dirichlet Allocation,” Univ. Gadjah Mada, vol. 4, no. 1, pp. 53–63, 2023, doi: 10.20956/ejsa.vi.24843.

S. Yoga, F. Nurul Isnaini, and O. Pamulatsih Dwi, “Pemodelan Topik Penelitian Bidang Keperawatan Indonesia pada Repository Jurnal Sinta Menggunakan Metode Topic Modelling LDA (Latent Dirichlet Allocation),” Semin. Nas. Teknol. Inf. Ilmu Komput., vol. 1, pp. 90–102, 2020.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Text Mining Dalam Penentuan Kinerja Layanan Antara Grab dan Gojek Berdasarkan Opini Masyarakat Menggunakan LDA

Dimensions Badge
Article History
Submitted: 2024-01-15
Published: 2024-01-31
Abstract View: 318 times
PDF Download: 319 times
How to Cite
Syapira, T., & Zufria, I. (2024). Implementasi Text Mining Dalam Penentuan Kinerja Layanan Antara Grab dan Gojek Berdasarkan Opini Masyarakat Menggunakan LDA. Journal of Information System Research (JOSH), 5(2), 666-675. https://doi.org/10.47065/josh.v5i2.4833
Section
Articles

Most read articles by the same author(s)