Analisis Sentimen Terhadap Bakal Capres RI 2024 di Twitter Menggunakan Algoritma SVM
Abstract
In 2024, Indonesia will hold an election for head of state which will be the pinnacle of democracy in its political system. In the context of democracy, active community participation plays a key role in making general elections successful. However, there is still a tendency for people to only follow election procedures without actively participating. Therefore, this research was conducted to analyze public sentiment towards the 2024 presidential candidates, using data from social media Twitter. Social media, especially Twitter, has become the main platform for Indonesian people to express their political opinions, views and preferences. With the number of social media users reaching 170 million in 2021, Indonesia has great potential to gather various opinions and sentiments regarding general elections. This research aims to analyze sentiment using the Support Vector Machine (SVM) method on tweets containing hashtags related to three presidential candidates, namely Aniesbaswedan, Ganjarpranowo, and Prabowosubianto. The results of sentiment analysis show that the SVM method can be used to analyze sentiment with an accuracy of around 78.3 % overall. This accuracy is influenced by factors such as the amount of data used and the composition of positive and negative data. The sentiment data analyzed came from 1719 tweets from Twitter users, with a distribution of around 597 data for Aniesbaswedan, 627 data for Ganjarpranowo, and 495 data for Prabowo Subianto. This research provides insight into how Indonesian people convey their sentiments regarding the 2024 presidential candidates via social media. . This sentiment analysis can be an important reference in understanding the public's political preferences ahead of the upcoming general election.
Downloads
References
M. R. A. Nasution and M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,” J. Inform., vol. 6, no. 2, pp. 226–235, 2019, doi: 10.31311/ji.v6i2.5129.
M. R. Fahlevvi, “Analisis Sentimen Terhadap Ulasan Aplikasi Pejabat Pengelola Informasi Dan Dokumentasi Kementerian Dalam Negeri Republik Indonesia Di Google Playstore Menggunakan Metode Support Vector Machine,” J. Teknol. dan Komun. Pemerintah., vol. 4, no. 1, pp. 1–13, 2022, doi: 10.33701/jtkp.v4i1.2701.
G. T. Santoso, “Analisis Sentimen Pada Tweet Dengan Tagar #Bpjsrasarentenir Menggunakan Metode Support Vectore Machine (Svm),” pp. 12–13, 2021.
H. C. Husada and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Teknika, vol. 10, no. 1, pp. 18–26, 2021, doi: 10.34148/teknika.v10i1.311.
S. Nurul, J. Fitriyyah, N. Safriadi, E. Esyudha, and P. #3, “JEPIN (Jurnal Edukasi dan Penelitian Informatika) Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes,” (Jurnal Edukasi dan Penelit. Inform., vol. 5, no. 3, pp. 279–285, 2019, [Online]. Available: http://dx.doi.org/10.26418/jp.v5i3.34368.
H. Setiawan, E. Utami, and S. Sudarmawan, “Analisis Sentimen Twitter Kuliah Online Pasca Covid-19 Menggunakan Algoritma Support Vector Machine dan Naive Bayes,” J. Komtika (Komputasi dan Inform., vol. 5, no. 1, pp. 43–51, 2021, doi: 10.31603/komtika.v5i1.5189.
E. Fitri, “Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine,” J. Transform., vol. 18, no. 1, p. 71, 2020, doi: 10.26623/transformatika.v18i1.2317.
M. R. Adrian, M. P. Putra, M. H. Rafialdy, and N. A. Rakhmawati, “Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB,” J. Inform. Upgris, vol. 7, no. 1, pp. 36–40, 2021.
A. S. Rahayu, A. Fauzi, and R. Rahmat, “Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Spotify,” J. Sist. Komput. dan Inform., vol. 4, no. 2, p. 349, 2022, doi: 10.30865/json.v4i2.5398.
N. Herlinawati, Y. Yuliani, S. Faizah, W. Gata, and S. Samudi, “Analisis Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes dan Support Vector Machine,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, p. 293, 2020, doi: 10.24114/cess.v5i2.18186.
T. Berdasarkan and M. Metode, “Analisis Sentimen Pemilihan Presiden Indonesia Tahun 2019 Di Twitter Berdasarkan Geolocation Menggunakan Metode Naïve Bayesian Classification Sentiment Analysis of Indonesia Presidency Election 2019 on Twitter Based on Geolocation Using Naïve Bayesian Cla,” pp. 115–127, 2019.
M. Raihan, F. Sya, U. Enri, and T. N. Padilah, “Analisis Sentimen Terhadap Bakal Calon Presiden 2024 dengan Algoritma Naïve Bayes,” vol. 9, no. 2, pp. 265–273, 2022, doi: 10.30865/jurikom.v9i2.3989.
S. F. Pratama, R. Andrean, and A. Nugroho, “Analisis Sentimen Twitter Debat Calon Presiden Indonesia Menggunakan Metode Fined-Grained Sentiment Analysis,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 4, no. 2, p. 39, 2019, doi: 10.31328/jointecs.v4i2.1004.
W. P. Jati, A. Z. Lutfi, H. Ilma, and E. Widodo, “Analisis Sentimen terhadap Isu Politik Calon Presiden Indonesia 2019 berdasarkan Opini Netizen dari Twitter menggunakan Metode Klasifikasi Support Vector Machine,” Pros. Konf. Nas. Penelit. Mat. dan Pembelajarannya IV 2019, no. Prodi Pendidikan Matematika FKIP UMS, p. PROSIDING-M2, 2019.
R. Mahendrajaya, G. A. Buntoro, and M. B. Setyawan, “Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based Dan Support Vector Machine,” Komputek, vol. 3, no. 2, p. 52, 2019, doi: 10.24269/jkt.v3i2.270.
M. Furqan, S. Sriani, and S. M. Sari, “Analisis Sentimen Menggunakan K-Nearest Neighbor Terhadap New Normal Masa Covid-19 Di Indonesia,” Techno.Com, vol. 21, no. 1, pp. 51–60, 2022, doi: 10.33633/tc.v21i1.5446.
M. S. Hasibuan and A. Serdano, “Analisis Sentimen Kebijakan Pembelajaran Tatap Muka Menggunakan Support Vector Machine dan Naive Bayes,” JRST (Jurnal Ris. Sains dan Teknol., vol. 6, no. 2, p. 199, 2022, doi: 10.30595/jrst.v6i2.15145.
O. I. Gifari, M. Adha, F. Freddy, and F. F. S. Durrand, “Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine,” J. Inf. Technol., vol. 2, no. 1, pp. 36–40, 2022, doi: 10.46229/jifotech.v2i1.330.
A. P. Nardilasari, A. L. Hananto, S. S. Hilabi, T. Tukino, and B. Priyatna, “Analisis Sentimen Calon Presiden 2024 Menggunakan Algoritma SVM Pada Media Sosial Twitter,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 8, no. 1, p. 11, 2023, doi: 10.31328/jointecs.v8i1.4265.
H. Sujadi, “Analisis Sentimen Pengguna Media Sosial Twitter Terhadap Wabah Covid-19 Dengan Metode Naive Bayes Classifier Dan Support Vector Machine,” INFOTECH J., vol. 8, no. 1, pp. 22–27, 2022, doi: 10.31949/infotech.v8i1.1883.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Terhadap Bakal Capres RI 2024 di Twitter Menggunakan Algoritma SVM
Pages: 53-63
Copyright (c) 2023 Arfina Handayani, Ilka Zufria

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).