Analisis Kinerja Algoritma Naive Bayes dalam Klasifikasi Data pada Pasien Tuberkulosis Berbasis Data Mining


  • Ulumuddin Ulumuddin * Mail Universitas Bina Sarana Informatika PSDKU Kota Tegal, Indonesia
  • Pudji Widodo Universitas Bina Sarana Informatika PSDKU Kota Tegal, Indonesia
  • (*) Corresponding Author
Keywords: Tuberculosis; Data Mining; Naive Bayes; Classification; Public Health Center.

Abstract

Tuberculosis (TB) is one of the infectious diseases that remains a major public health problem in Indonesia, particularly at the primary healthcare level such as public health centers. The increasing amount of patient data stored in health information systems requires effective analytical methods to support accurate and efficient decision-making. This study aims to analyze the performance of the Naive Bayes algorithm in classifying tuberculosis patient data. The dataset used in this research was obtained from medical records of TB patients and non-TB patients, which were processed through several preprocessing stages, including data cleaning, data integration, data transformation, and normalization to ensure data quality. The data were then divided into training and testing datasets for classification purposes. The Naive Bayes algorithm was implemented to classify patient status based on selected clinical and demographic attributes. Model performance was evaluated using a confusion matrix and several evaluation metrics, including accuracy, precision, recall, and F1-score. The experimental results show that the Naive Bayes algorithm achieves satisfactory performance in classifying tuberculosis patient data and demonstrates good efficiency when applied to real-world healthcare data. However, the algorithm still has limitations related to the assumption of independence among attributes, which may affect classification accuracy. The findings of this study are expected to contribute to the development of a decision support system that can assist healthcare professionals at public health centers in performing early classification and analysis of tuberculosis patient data more effectively and efficiently.

 

References

J. S. Sipayung, W. Hidayat, and E. M. Silitonga, “Faktor Risiko yang Memengaruhi Kejadian Tuberkulosis ( TB ) Paru di Wilayah Kerja Puskesmas Perbaungan Risk Faktors Affecting the Incident of Pulmonary Tuberculosis ( TB ) in the Working Area of Perbaungan Public Health Center,” vol. 15, no. 2, 2023.

F. K. Masyarakat et al., “https://doi.org/10.36729,” vol. 7, pp. 78–88, 2022.

T. Aprilia, T. Informatika, and U. S. Sri, “Klasifikasi Kanker Payudara Menggunakan Algoritma K-Nearest Neighbor dan Metode Naive Bayes,” vol. 4, no. 2, pp. 156–163, 2024, doi: 10.54259/satesi.v4i2.3167.

G. Satya Nugraha, M. Nurkholis Abdillah, and M. Innuddin, “Komparasi Akurasi Metode Correlated Naive Bayes Classifier Dan Naive Bayes Classifier Untuk Diagnosis Penyakit Diabetes.”

N. Bayes, C. Dan, and R. Forest, “Analisis Sentimen Aplikasi Playstore Sirekap 2024 Pasca Pilpres Dengan Perbandingan Metode Support Vector Machine ( SVM ), Sentiment Analysis Of The Sirekap 2024 Playstore Application Post-Presidential Election With Comparison Of Support Vector Machine ( SVM ), Naïve Bayes Classifier , And Random Forest Methods .,” vol. 11, no. 3, pp. 661–670, 2025.

S. Pemanfaatan, T. Data, U. Analisis, D. Kesehatan, and D. I. Klinik, “Jurnal Abdimas Saintika,” pp. 181–186.

A. A. Ningtyas, A. Solichin, and R. Pradana, “Analisis Sentimen Komentar Youtube Tentang Prediksi Resesi Ekonomi Tahun 2023 Menggunakan Algoritme Sentiment Analysis Of Youtube Comments On Prediction Of Economic Recession In 2023 Using The Naïve Bayes,” vol. 20, no. 1, pp. 9–16, 2023.

I. Kononenko, “Machine Learning for Medical Diagnosis : History , State of the Art and Perspective Historical overview,” pp. 1–25.

D. D. Putri, G. F. Nama, and W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat ( Dpr ) Pada Twitter Menggunakan Metode Naive Bayes Classifier,” vol. 10, no. 1, pp. 34–40, 2022.

D. A. Faroek, M. Yusuf, and G. Syatauw, “A s t p p p c 2024 t m a n b c,” vol. 17, no. 2, pp. 216–226, 2024.

L. R. Krosuri, R. Satish, S. Fan, and J. Yao, “Extraction Sentiment Analysis Using naive Bayes Algorithm and Reducing Noise Word applied in Indonesian Language Extraction Sentiment Analysis Using naive Bayes Algorithm and Reducing Noise Word applied in Indonesian Language”, doi: 10.1088/1757-899X/835/1/012051.

Y. Azhar, A. K. Firdausy, and P. J. Amelia, “Perbandingan Algoritma Klasifikasi Data Mining Untuk Prediksi Penyakit Stroke,” vol. 5, no. 2, pp. 191–197, 2022.

F. M. Julianto, A. T. Zy, and E. Rilvani, “Sentiment Analysis on Canva Reviews Using Naive Bayes Method,” Int. J. Informatics Comput., vol. 7, no. 1, 2025, doi: 10.35842/ijicom.

G. H. Hilmawan, U. S. April, and K. Sumedang, “Literatur Review : Efektifitas Penerapan Metode,” vol. 3, no. 6, 2025.

T. Pantai, K. Jepara, M. A. Anwar, H. Mulyo, and T. Tamrin, “Optimalisasi Algoritma Naive Bayes Dengan Teknik Ensemble Dalam Analisis Sentimen,” J. Minfo Polgan, vol. 13, no. 1, 2024, doi: 10.33395/jmp.v13i1.14014.

U. N. Putra, S. Media, A. Sentimen, and N. Bayes, “Systematic Literature Review ( Slr ): Analisis Sentimen Pemilihan Calon Presiden 2024 Menggunakan Metode,” 2024.

F. Rambu, B. Kahi, A. C. Talakua, and R. T. Abineno, “Analisis Sentimen Masyarakat Di Twitter Terhadap Pemerintahan Anies Baswedan Menggunakan Metode Naive Bayes Classifier,” vol. 13, no. April, pp. 324–336, 2024.

R. Nurzuli, “Lung Diseases Classification Using the Naïve Bayes Algorithm,” vol. 7, no. 2, 2025, doi: 10.35842/ijicom.

“The Indonesian Journal of Health Promotion MPPKI Media Publikasi Promosi Kesehatan Indonesia Analisis Implementasi Strategi Promosi Kesehatan dalam Pencegahan Penyakit Tuberkulosis (TB) (Studi Kasus di Wilayah Kerja Puskesmas Kalumata Kota Ternate),” 2022, doi: 10.31934/mppki.v2i3.

Y. A. Rizky, A. Aziz, and W. Harianto, “Implementasi Naive Bayes Dengan Menggunakan Metode Laplace Smoothing,” RAINSTEK J. Terap. Sains dan Teknol., vol. 6, no. 3, pp. 164–172, Sep. 2024, doi: 10.21067/jtst.v6i3.9132.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Kinerja Algoritma Naive Bayes dalam Klasifikasi Data pada Pasien Tuberkulosis Berbasis Data Mining

Dimensions Badge
Article History
Submitted: 2025-12-20
Published: 2025-12-31
Abstract View: 49 times
pdf Download: 26 times
Section
Articles