Analisis Kinerja Algoritma Naive Bayes dalam Klasifikasi Data pada Pasien Tuberkulosis Berbasis Data Mining
Abstract
Tuberculosis (TB) is one of the infectious diseases that remains a major public health problem in Indonesia, particularly at the primary healthcare level such as public health centers. The increasing amount of patient data stored in health information systems requires effective analytical methods to support accurate and efficient decision-making. This study aims to analyze the performance of the Naive Bayes algorithm in classifying tuberculosis patient data. The dataset used in this research was obtained from medical records of TB patients and non-TB patients, which were processed through several preprocessing stages, including data cleaning, data integration, data transformation, and normalization to ensure data quality. The data were then divided into training and testing datasets for classification purposes. The Naive Bayes algorithm was implemented to classify patient status based on selected clinical and demographic attributes. Model performance was evaluated using a confusion matrix and several evaluation metrics, including accuracy, precision, recall, and F1-score. The experimental results show that the Naive Bayes algorithm achieves satisfactory performance in classifying tuberculosis patient data and demonstrates good efficiency when applied to real-world healthcare data. However, the algorithm still has limitations related to the assumption of independence among attributes, which may affect classification accuracy. The findings of this study are expected to contribute to the development of a decision support system that can assist healthcare professionals at public health centers in performing early classification and analysis of tuberculosis patient data more effectively and efficiently.
References
J. S. Sipayung, W. Hidayat, and E. M. Silitonga, “Faktor Risiko yang Memengaruhi Kejadian Tuberkulosis ( TB ) Paru di Wilayah Kerja Puskesmas Perbaungan Risk Faktors Affecting the Incident of Pulmonary Tuberculosis ( TB ) in the Working Area of Perbaungan Public Health Center,” vol. 15, no. 2, 2023.
F. K. Masyarakat et al., “https://doi.org/10.36729,” vol. 7, pp. 78–88, 2022.
T. Aprilia, T. Informatika, and U. S. Sri, “Klasifikasi Kanker Payudara Menggunakan Algoritma K-Nearest Neighbor dan Metode Naive Bayes,” vol. 4, no. 2, pp. 156–163, 2024, doi: 10.54259/satesi.v4i2.3167.
G. Satya Nugraha, M. Nurkholis Abdillah, and M. Innuddin, “Komparasi Akurasi Metode Correlated Naive Bayes Classifier Dan Naive Bayes Classifier Untuk Diagnosis Penyakit Diabetes.”
N. Bayes, C. Dan, and R. Forest, “Analisis Sentimen Aplikasi Playstore Sirekap 2024 Pasca Pilpres Dengan Perbandingan Metode Support Vector Machine ( SVM ), Sentiment Analysis Of The Sirekap 2024 Playstore Application Post-Presidential Election With Comparison Of Support Vector Machine ( SVM ), Naïve Bayes Classifier , And Random Forest Methods .,” vol. 11, no. 3, pp. 661–670, 2025.
S. Pemanfaatan, T. Data, U. Analisis, D. Kesehatan, and D. I. Klinik, “Jurnal Abdimas Saintika,” pp. 181–186.
A. A. Ningtyas, A. Solichin, and R. Pradana, “Analisis Sentimen Komentar Youtube Tentang Prediksi Resesi Ekonomi Tahun 2023 Menggunakan Algoritme Sentiment Analysis Of Youtube Comments On Prediction Of Economic Recession In 2023 Using The Naïve Bayes,” vol. 20, no. 1, pp. 9–16, 2023.
I. Kononenko, “Machine Learning for Medical Diagnosis : History , State of the Art and Perspective Historical overview,” pp. 1–25.
D. D. Putri, G. F. Nama, and W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat ( Dpr ) Pada Twitter Menggunakan Metode Naive Bayes Classifier,” vol. 10, no. 1, pp. 34–40, 2022.
D. A. Faroek, M. Yusuf, and G. Syatauw, “A s t p p p c 2024 t m a n b c,” vol. 17, no. 2, pp. 216–226, 2024.
L. R. Krosuri, R. Satish, S. Fan, and J. Yao, “Extraction Sentiment Analysis Using naive Bayes Algorithm and Reducing Noise Word applied in Indonesian Language Extraction Sentiment Analysis Using naive Bayes Algorithm and Reducing Noise Word applied in Indonesian Language”, doi: 10.1088/1757-899X/835/1/012051.
Y. Azhar, A. K. Firdausy, and P. J. Amelia, “Perbandingan Algoritma Klasifikasi Data Mining Untuk Prediksi Penyakit Stroke,” vol. 5, no. 2, pp. 191–197, 2022.
F. M. Julianto, A. T. Zy, and E. Rilvani, “Sentiment Analysis on Canva Reviews Using Naive Bayes Method,” Int. J. Informatics Comput., vol. 7, no. 1, 2025, doi: 10.35842/ijicom.
G. H. Hilmawan, U. S. April, and K. Sumedang, “Literatur Review : Efektifitas Penerapan Metode,” vol. 3, no. 6, 2025.
T. Pantai, K. Jepara, M. A. Anwar, H. Mulyo, and T. Tamrin, “Optimalisasi Algoritma Naive Bayes Dengan Teknik Ensemble Dalam Analisis Sentimen,” J. Minfo Polgan, vol. 13, no. 1, 2024, doi: 10.33395/jmp.v13i1.14014.
U. N. Putra, S. Media, A. Sentimen, and N. Bayes, “Systematic Literature Review ( Slr ): Analisis Sentimen Pemilihan Calon Presiden 2024 Menggunakan Metode,” 2024.
F. Rambu, B. Kahi, A. C. Talakua, and R. T. Abineno, “Analisis Sentimen Masyarakat Di Twitter Terhadap Pemerintahan Anies Baswedan Menggunakan Metode Naive Bayes Classifier,” vol. 13, no. April, pp. 324–336, 2024.
R. Nurzuli, “Lung Diseases Classification Using the Naïve Bayes Algorithm,” vol. 7, no. 2, 2025, doi: 10.35842/ijicom.
“The Indonesian Journal of Health Promotion MPPKI Media Publikasi Promosi Kesehatan Indonesia Analisis Implementasi Strategi Promosi Kesehatan dalam Pencegahan Penyakit Tuberkulosis (TB) (Studi Kasus di Wilayah Kerja Puskesmas Kalumata Kota Ternate),” 2022, doi: 10.31934/mppki.v2i3.
Y. A. Rizky, A. Aziz, and W. Harianto, “Implementasi Naive Bayes Dengan Menggunakan Metode Laplace Smoothing,” RAINSTEK J. Terap. Sains dan Teknol., vol. 6, no. 3, pp. 164–172, Sep. 2024, doi: 10.21067/jtst.v6i3.9132.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Kinerja Algoritma Naive Bayes dalam Klasifikasi Data pada Pasien Tuberkulosis Berbasis Data Mining
Pages: 75 - 81
Copyright (c) 2025 Ulumuddin Ulumuddin, Pudji Widodo

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).


