Perbandingan Kinerja Algoritma K-Nearest Neighbor dan Algoritma Random Forest Untuk Klasifikasi Data Mining Pada Penyakit Gagal Ginjal
Abstract
Kidney failure is one of the most common chronic diseases worldwide. This condition occurs when the kidneys lose their ability to filter waste and excess fluid from the blood. Kidney failure is a serious condition that occurs when kidney function decreases significantly or stops altogether. Kidney failure has a wide impact on the physical, mental, and social health of patients. Therefore, early treatment and a holistic approach are needed to minimize its impact. In the health sector, technological advances have enabled more effective processing of medical data through the application of data mining. Data Mining is the process of exploring and analyzing large amounts of data to find patterns, relationships, or valuable information that was previously unknown. Classification in Data Mining is the process of grouping or categorizing data into certain classes or labels based on the attributes or features it has. In the classification itself, there are various algorithms in it such as the K-Nearest Neighbor (KNN) and Random Forest (RF) algorithms. The K-Nearest Neighbor (KNN) and Random Forest (RF) algorithms are two algorithms that are widely used in classification tasks. Therefore, this study will carry out a comparison process on the performance of the K-Nearest Neighbor algorithm and the Random Forest algorithm. Comparison of data mining algorithm performance to evaluate and determine which algorithm is the most effective and efficient in solving a particular problem based on various evaluation metrics. Overall, the accuracy value obtained is above 90%, but the Random Forest algorithm has better performance. Where the accuracy level results obtained from the Random Forest algorithm are 99.75%. Therefore, the model or pattern produced by the Random Forest algorithm will later be used to assist in the process of diagnosing kidney failure and the Random Forest algorithm is an algorithm that has better performance.
Downloads
References
W. A. S, R. A. Ramadhan, and R. S. I. S, “Komparasi Algoritma Machine Learning dalam Memprediksi Penyakit Gagal Ginjal,” J. Penelit. dan Karya Ilm., vol. 1, no. Desember, pp. 363–374, 2023.
Safuan Safuan, “Deteksi Penyakit Gagal Ginjal Kronis Menggunakan Algoritma ID3,” Elkom J. Elektron. dan Komput., vol. 13, no. 1, pp. 8–17, 2020, doi: 10.51903/elkom.v13i1.136.
I. Wisnuadji Gamadarenda and I. Waspada, “IMPLEMENTASI DATA MINING UNTUK DETEKSI PENYAKIT GINJAL KRONIS (PGK) MENGGUNAKAN K-NEAREST NEIGHBOR (KNN) DENGAN BACKWARD ELIMINATION,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 2, pp. 417–426, 2020, doi: 10.25126/jtiik.202071896.
A. K. Wijaya, R. Syifa, I. N. Rahmadianto, and R. K. Hapsari, “Identifikasi Penyakit Ginjal Kronis Menggunakan Algoritma K-Nearest Neighbour ( k-NN ),” Semin. Nas. Inform. Bela Negara, vol. 4, pp. 105–109, 2024.
P. A. R. Devi, “KLASIFIKASI PENYAKIT GAGAL GINJAL KRONIS DENGAN METODE KNN (STUDI KASUS RS DI KAB GRESIK),” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 9, no. 3, pp. 1739–1748, 2024.
I. Yulianti, R. A. Saputra, M. S. Mardiyanto, and A. Rahmawati, “Optimasi Akurasi Algoritma C4.5 Berbasis Particle Swarm Optimization dengan Teknik Bagging pada Prediksi Penyakit Ginjal Kronis,” Techno.Com, vol. 19, no. 4, pp. 411–421, 2020, doi: 10.33633/tc.v19i4.3579.
B. A. Candra Permana and I. K. Dewi Patwari, “Komparasi Metode Klasifikasi Data Mining Decision Tree dan Naïve Bayes Untuk Prediksi Penyakit Diabetes,” Infotek J. Inform. dan Teknol., vol. 4, no. 1, pp. 63–69, 2021, doi: 10.29408/jit.v4i1.2994.
M. Rizal, M. Z. Syahaf, S. R. Priyambodo, and Y. Rhamdani, “Optimasi Algoritma Naïve Bayes Menggunakan Forward Selection Untuk Klasifikasi Penyakit Ginjal Kronis,” Naratif J. Nas. Riset, Apl. dan Tek. Inform., vol. 5, no. 1, pp. 71–80, 2023, doi: 10.53580/naratif.v5i1.200.
N. Fatimah Indrianti, A. Kania Ningsih, and R. Ilyas, “Implementasi Data Mining Untuk Klasifikasi Penyakit Gagal Ginjal Kronis Menggunakan Metode K-Nearest Neighbor,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 2255–2260, 2024, doi: 10.36040/jati.v8i2.9464.
M. Syahrizal, S. Aripin, D. P. Utomo, Mesran, Sarwandi, and N. A. Hasibuan, “The application of the K-NN imputation method for handling missing values in a dataset,” AIP Conf. Proc., vol. 2048, no. 1, 2024.
Mesran, M. Syahrizal, Sarwandi, S. Aripin, D. P. Utomo, and A. Karim, “A comparison of the performance of data mining classification algorithms on medical datasets with the application of data normalization,” AIP Conf. Proc., vol. 3048, no. 1, 2024.
D. P. Utomo, Mesran, Sarwandi, S. Aripin, M. Syahrizal, and Pristiwanto, “A comparative analysis of data normalization on data mining classification performance,” AIP Conf. Proc., vol. 3048, no. 1, 2024.
A. D. W. M. Sidik, I. Himawan Kusumah, A. Suryana, Edwinanto, M. Artiyasa, and A. Pradiftha Junfithrana, “Gambaran Umum Metode Klasifikasi Data Mining,” Fidel. J. Tek. Elektro, vol. 2, no. 2, pp. 34–38, 2020, doi: 10.52005/fidelity.v2i2.111.
N. B. Putri and A. W. Wijayanto, “Analisis Komparasi Algoritma Klasifikasi Data Mining Dalam Klasifikasi Website Phishing,” Komputika J. Sist. Komput., vol. 11, no. 1, pp. 59–66, 2022, doi: 10.34010/komputika.v11i1.4350.
Y. Azhar, A. K. Firdausy, and P. J. Amelia, “Perbandingan Algoritma Klasifikasi Data Mining Untuk Prediksi Penyakit Stroke,” SINTECH (Science Inf. Technol. J., vol. 5, no. 2, pp. 191–197, 2022, doi: 10.31598/sintechjournal.v5i2.1222.
S. Rahayu and J. J. Purnama, “Klasifikasi Konsumsi Energi Industri Baja Menggunakan Teknik Data Mining,” J. Teknoinfo, vol. 16, no. 2, p. 395, 2022, doi: 10.33365/jti.v16i2.1984.
W. Irmayani, “Visualisasi Data Pada Data Mining Menggunakan Metode Klasifikasi,” J. Khatulistiwa Inform., vol. IX, no. I, pp. 68–72, 2021.
I. S. Muallif, H. Budiman, and N. Ransi, “Penerapan Data Mining untuk Prediksi Pergerakan Harga Saham Menggunakan Algoritma K-Nearest Neighbor,” in PROSIDING SEMINAR NASIONAL PEMANFAATAN SAINS DAN TEKNOLOGI INFORMASI, 2023, vol. 1, no. 1, pp. 297–306.
D. Cahyanti, A. Rahmayani, and S. A. Husniar, “Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara,” Indones. J. Data Sci., vol. 1, no. 2, pp. 39–43, 2020, doi: 10.33096/ijodas.v1i2.13.
M. A. Muzani, M. I. A. Sukri, S. N. Fauziah, A. Fatkhurohman, and D. Ariatmanto, “Data Mining Untuk Klasifikasi Produk Menggunakan Algoritma K-Nearest Neighbor Pada Toko Online,” Pros. SISFOTEK ISSN 2597-3584, vol. 5, no. 1, pp. 141–145, 2021, [Online]. Available: http://seminar.iaii.or.id/index.php/SISFOTEK/article/view/273.
S. Munawaroh, U. A. Rosyidah, and R. Yanuarti, “Klasifikasi Tingkat Kecemasan Atlet Sebelum Bertanding Menggunakan Algoritma K-Nearest Neighbor (KNN) Berbasis Website,” BIOS J. Teknol. Inf. dan Rekayasa Komput., vol. 5, no. 2, pp. 87–94, 2024.
A. Oktaviana, D. P. Wijaya, A. Pramuntadi, and D. Heksaputra, “Prediksi Penyakit Diabetes Melitus Tipe 2 Menggunakan Algoritma K-Nearest Neighbor (K-NN),” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 3, pp. 812–818, 2024, doi: 10.57152/malcom.v4i3.1268.
U. Nijunnihayah, S. S. Hilabi, F. Nurapriani, and E. Novalia, “Implementasi Algoritma K-Nearest Neighbor untuk Prediksi Penjualan Alat Kesehatan pada Media Alkes,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 2, pp. 695–701, 2024, doi: 10.57152/malcom.v4i2.1326.
S. A. Fitria, H. Oktafia, L. Wijaya, and D. Irawan, “Data Mining Classification Untuk Prediksi Jumlah Mahasiswa Aktif dan Cuti Angkatan 2020 Menggunakan Metode K-Nearest Neighbor,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 5, pp. 2637–2645, 2024, doi: 10.30865/klik.v4i5.1795.
G. A. Sandag, “Prediksi Rating Aplikasi App Store Menggunakan Algoritma Random Forest,” CogITo Smart J., vol. 6, no. 2, pp. 167–178, 2020, doi: 10.31154/cogito.v6i2.270.167-178.
R. Supriyadi, W. Gata, N. Maulidah, and A. Fauzi, “Penerapan Algoritma Random Forest Untuk Menentukan Kualitas Anggur Merah,” E-Bisnis J. Ilm. Ekon. dan Bisnis, vol. 13, no. 2, pp. 67–75, 2020, doi: 10.51903/e-bisnis.v13i2.247.
L. Sari, A. Romadloni, and R. Listyaningrum, “Penerapan Data Mining dalam Analisis Prediksi Kanker Paru Menggunakan Algoritma Random Forest,” Infotekmesin, vol. 14, no. 1, pp. 155–162, 2023, doi: 10.35970/infotekmesin.v14i1.1751.
K. G. Putra, “Penentuan Penerima Bantuan Program Keluarga Harapan menggunakan Algoritma Random Forest di Desa Kebonrejo,” Innov. J. Soc. Sci. Res. Vol., vol. 4, no. 5, pp. 7242–7257, 2024.
L. Hidayah and M. I. Rosadi, “Penerapan Algoritma Random Forest Untuk Memprediksi Jumlah Santri Baru,” JITET (Jurnal Inform. dan Tek. Elektro Ter., vol. 5, no. 1, pp. 49–54, 2024.
M. R. A. Putra and Rissa Nurfitriana Handayani, “Perbandingan Algoritma Decision Tree dan Random Forest Dalam Pengklasifikasian Penyakit Tiroid,” in E-PROSIDING SISTEM INFORMASI, 2024, vol. 5, no. 2, pp. 166–172.
D. C. P. Buani, “Deteksi Dini Penyakit Diabetes dengan Menggunakan Algoritma Random Forest,” EVOLUSI J. Sains dan Manaj., vol. 12, no. 1, pp. 1–8, 2024, doi: 10.31294/evolusi.v12i1.21005.
S. Widaningsih and S. Yusuf, “Penerapan Data Mining untuk Memprediksi Siswa Berprestasi dengan Menggunakan Algoritma K Nearest Neighbor,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 3, pp. 2598–2611, 2022, doi: 10.35957/jatisi.v9i3.859.
S. Ucha Putri, E. Irawan, and F. Rizky, “Implementasi Data Mining Untuk Prediksi Penyakit Diabetes Dengan Algoritma C4.5,” KESATRIA J. Penerapan Sist. Inf. (Komputer Manajemen), vol. 2, no. 1, pp. 39–46, 2021.
H. P. Doloksaribu and Y. T. Samuel, “KOMPARASI ALGORITMA DATA MINING UNTUK ANALISIS SENTIMEN APLIKASI PEDULILINDUNGI,” J. Teknol. Inf., vol. 16, no. 1, pp. 1–11, 2022.
A. R. Wibowo and A. Jananto, “Implementasi Data Mining Metode Asosiasi Algoritma FP-Growth Pada Perusahaan Ritel,” Inspir. J. Teknol. Inf. dan Komun., vol. 10, no. 2, p. 200, 2020, doi: 10.35585/inspir.v10i2.2585.
F. Y. Rahman, I. I. Purnomo, and N. Hijriana, “PENERAPAN ALGORITMA DATA MINING UNTUK KLASIFIKASI KUALITAS AIR,” Technologia, vol. 13, no. 3, pp. 228–232, 2022.
Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI.
Sekar Setyaningtyas, B. Indarmawan Nugroho, and Z. Arif, “Tinjauan Pustaka Sistematis: Penerapan Data Mining Teknik Clustering Algoritma K-Means,” J. Teknoif Tek. Inform. Inst. Teknol. Padang, vol. 10, no. 2, pp. 52–61, 2022, doi: 10.21063/jtif.2022.v10.2.52-61.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Perbandingan Kinerja Algoritma K-Nearest Neighbor dan Algoritma Random Forest Untuk Klasifikasi Data Mining Pada Penyakit Gagal Ginjal
Pages: 1943-1953
Copyright (c) 2024 Salmon Salmon, Azahari Azahari, Hanifah Ekawati

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).