Perbandingan Model Machine Learning dalam Analisis Sentimen Pada Kasus Monkeypox di Media Sosial X
Abstract
Monkeypox or MPOX, is a zoonotic disease caused by the monkeypox virus, a member of the genus Orthopoxvirus. Monkeypox became a global concern after cases of transmission were reported in various countries, sparking widespread discussion on social media X. This platform is often used by the public to disseminate information and express concerns related to the disease. This study aims to compare the performance of several models in sentiment analysis related to the Monkeypox case on social media X. The models tested include Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Naïve Bayes, and Random Forest (RF). The data used consisted of tweets containing opinions or information about Monkeypox, which were then processed through the stages of text normalization, remove stopwords, and stemming. Furthermore, feature weighting was carried out using the TF-IDF technique and feature selection using the Chi-Square method, resulting in an optimal number of features of 652. The results of the analysis show that SVM provides the highest accuracy of 83%, with a 3% increase from the previous number of features, which was 500. Although KNN and Naïve Bayes showed significant improvements, Random Forest did not experience any significant changes in their performance. The study concluded that SVM is the most effective model in analyzing Monkeypox-related sentiment on social media X. For future research, it is recommended to explore deep learning techniques and the use of larger datasets to improve the accuracy and depth of sentiment analysis.
Downloads
References
I Ketut Suarayasa, Zulkifli, and O. mazmur Kristoper, “Mekanisme penyebaran Cacar Monyet Dan Faktor-Faktor Yang Mempengaruhinya,” SEHATMAS: Jurnal Ilmiah Kesehatan Masyarakat, vol. 2, no. 1, pp. 28–34, Jan. 2023. doi:10.55123/sehatmas.v2i1.980
T. T. Widowati and M. Sadikin, “Analisis sentimen Twitter Terhadap tokoh publik Dengan Algoritma naive Bayes dan support Vector Machine,” Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 11, no. 2, pp. 626–636, Oct. 2021. doi:10.24176/simet.v11i2.4568
D. Ahmad Dzulhijjah, H. Sanjaya, A. Said Wahyudi Hidayat, A. Yulistia Alwanda, and E. Utami, “Perbandingan metode random forest Dan Knn Pada Analisis Sentimen twitter,” Smart Comp: Jurnalnya Orang Pintar Komputer, vol. 12, no. 3, pp. 767–772, Jul. 2023. doi:10.30591/smartcomp.v12i3.5106
F. Matheos Sarimole and K. Kudrat, “Analisis Sentimen Terhadap aplikasi Satu Sehat pada twitter Menggunakan algoritma naive Bayes Dan Support Vector Machine,” Jurnal Sains dan Teknologi, vol. 5, no. 3, pp. 783–790, Feb. 2024. doi:10.55338/saintek.v5i3.2702
D. Atmajaya, A. Febrianti, and H. Darwis, “Metode SVM Dan Naive Bayes Untuk Analisis Sentimen chatgpt di twitter,” The Indonesian Journal of Computer Science, vol. 12, no. 4, Aug. 2023. doi:10.33022/ijcs.v12i4.3341
P. K. Sari and R. R. Suryono, “Komparasi Algoritma Support vector machine dan random forest Untuk Analisis Sentimen metaverse,” Jurnal Mnemonic, vol. 7, no. 1, pp. 31–39, Feb. 2024. doi:10.36040/mnemonic.v7i1.8977
A. C. Prasetyo, M. P. Arnandi, H. S. Hudnanto, and B. Setiaji, “Perbandingan Algoritma astar Dan Dijkistra dalam menentukan Rute Terdekat,” SISFOTENIKA, vol. 9, no. 1, p. 36, Feb. 2019. doi:10.30700/jst.v9i1.456
T. A.M and A. Yaqin, “Perbandingan algoritma naïve Bayes, K-nearest neighbors Dan Random Forest Untuk Klasifikasi Sentimen TERHADAP BPJS kesehatan pada media twitter,” InComTech : Jurnal Telekomunikasi dan Komputer, vol. 12, no. 1, p. 01, Apr. 2022. doi:10.22441/incomtech.v12i1.13642
M. Yasir, Marissa Grace Haque, Robertus Suraji, and Istianingsih, “Analisis Sentimen Terhadap kontroversi fatwa Mui Nomor 83 Tahun 2023 Tentang pemboikotan produk Yang Terafiliasi Israel,” Jurnal Ekonomi Manajemen Sistem Informasi, vol. 5, no. 4, pp. 409–422, Mar. 2024. doi:10.31933/jemsi.v5i4.1845
W. Yulita, “Analisis Sentimen Terhadap opini Masyarakat Tentang Vaksin covid-19 Menggunakan algoritma naïve Bayes classifier,” Jurnal Data Mining dan Sistem Informasi, vol. 2, no. 2, p. 1, Aug. 2021. doi:10.33365/jdmsi.v2i2.1344
A. C. Najib, A. Irsyad, G. A. Qandi, and N. A. Rakhmawati, “Perbandingan metode lexicon-based Dan SVM Untuk Analisis Sentimen Berbasis Ontologi Pada Kampanye pilpres Indonesia tahun 2019 di twitter,” Fountain of Informatics Journal, vol. 4, no. 2, p. 41, Nov. 2019. doi:10.21111/fij.v4i2.3573
M. Samantri and Afiyati, “Perbandingan Algoritma support vector machine dan random forest Untuk Analisis Sentimen TERHADAP kebijakan Pemerintah Indonesia Terkait Kenaikan Harga BBM Tahun 2022,” Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), vol. 8, no. 1, pp. 1–9, Jan. 2024. doi:10.35870/jtik.v8i1.1202
N. Sidauruk, N. Riza, and Rd. N. Siti Fatonah, “Penggunaan metode SVM Dan Random Forest Untuk Analisis Sentimen Ulasan Pengguna Terhadap Kai Access di Google Playstore,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 3, pp. 1901–1906, Nov. 2023. doi:10.36040/jati.v7i3.6899
A. N. Syafia, M. F. Hidayattullah, and W. Suteddy, “Studi Komparasi Algoritma SVM Dan Random Forest Pada Analisis Sentimen Komentar YouTube BTS,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 8, no. 3, pp. 207–212, Sep. 2023. doi:10.30591/jpit.v8i3.5064
S. S. Salim and J. Mayary, “Analisis Sentimen Pengguna Twitter Terhadap Dompet Elektronik Dengan METODE lexicon based Dan K – Nearest Neighbor,” Jurnal Ilmiah Informatika Komputer, vol. 25, no. 1, pp. 1–17, 2020. doi:10.35760/ik.2020.v25i1.2411
K. T. Putra, M. A. Hariyadi, and C. Crysdian, “Perbandingan Feature extraction TF-IDF dan BOW Untuk Analisis Sentimen Berbasis SVM,” Jurnal Cahaya Mandalika, vol. 3, no. 2, pp. 1449-1463, Nov. 2023.
D. E. Sondakh, S.Kom, M.T, Ph.D, S. W. Taju, M. G. Tene, and A. E. Pangaila, “Sistem Analisis Sentimen Ulasan Aplikasi belanja online menggunakan metode ensemble learning,” CogITo Smart Journal, vol. 9, no. 2, pp. 280–291, Dec. 2023. doi:10.31154/cogito.v9i2.525.280-291
E. Hokijuliandy, H. Napitupulu, and F. Firdaniza, “Analisis Sentimen menggunakan metode Klasifikasi support vector machine (SVM) Dan Seleksi Fitur Chi-Square,” SisInfo : Jurnal Sistem Informasi dan Informatika, vol. 5, no. 2, pp. 40–49, Aug. 2023. doi:10.37278/sisinfo.v5i2.670
A. A. Saputro, “Sistem Pendukung keputusan Penerimaan bantuan sosial program Keluarga Harapan (PKH) Dengan Menggunakan metode naïve Bayes classifier (Studi Kasus di Balai Desa Bendungan kraton pasuruan),” Jurnal Ilmiah Edutic : Pendidikan dan Informatika, vol. 9, no. 1, pp. 40–48, Nov. 2022. doi:10.21107/edutic.v9i1.12232
I. Hendrawan Rifky, E. Utami, and A. Hartanto Dwi, “Analisis Perbandingan metode tf-IDF dan Word2vec Pada klasifikasi teks sentimen masyarakat TERHADAP Produk Lokal di Indonesia,” Smart Comp: Jurnalnya Orang Pintar Komputer, vol. 11, no. 3, Jul. 2022. doi:10.30591/smartcomp.v11i3.3902
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Perbandingan Model Machine Learning dalam Analisis Sentimen Pada Kasus Monkeypox di Media Sosial X
Pages: 2005-2014
Copyright (c) 2024 Devi Prasetyoningrum

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).