Analisis Sentimen Opini Publik Program Makan Siang Gratis dengan Random Forest Pada Media
Abstract
The "Free Lunch Program," introduced as part of the 2024 Indonesian election campaign, became a hot topic on social media, especially on the platform X. This program aims to improve children's health and nutrition while reducing stunting rates by providing free lunches and milk to children and pregnant women. A study was conducted to analyze public sentiment regarding the program using the Random Forest algorithm. The data consisted of 9,347 tweets collected through web crawling. The analysis revealed that the majority of sentiments were negative (8,021 entries), while positive sentiments accounted for only 430 entries. The preprocessing steps included data cleaning, case folding, tokenization, stopword removal, and stemming. The imbalance between positive and negative sentiment data was addressed using the Synthetic Minority Over-sampling Technique (SMOTE), resulting in a more balanced dataset. After applying SMOTE, the model achieved 100% accuracy, with significant improvements in precision, recall, and F1-Score. The analysis showed that positive sentiments focused on the program's health and educational benefits, while negative sentiments highlighted criticism of implementation and budget allocation. This study demonstrates the value of sentiment analysis in evaluating social programs and understanding public perceptions.
Downloads
References
R. Saputra and F. N. Hasan, “Analisis Sentimen Terhadap Program Makan Siang & Susu Gratis Menggunakan Algoritma Naive Bayes,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 6, no. 3, pp. 411–419, 2024, doi: 10.47233/jteksis.v6i3.1378.
Z. Purwanti, “Pemodelan Text Mining untuk Analisis Sentimen Terhadap Program Makan Siang Gratis di Media Sosial X Menggunakan Algoritma Support Vector Machine ( SVM ),” JIMIK (Jurnal Indones. Manaj. Inform. dan Komunikasi), vol. 5, no. 3, pp. 3065–3079, 2024.
M. J. Abdurrahman and A. Wibowo, “Penerapan Text Mining Menggunakan Metode Multinomial Naive Bayes Program Makan Siang Gratis Pada X,” SENAFTI (Seminar Nas. Mhs. Fak. Teknol. Inf. ), vol. 3, no. September, pp. 603–611, 2024.
P. Ardelia Maharani, A. Riyani Namira, and T. Viony Chairunnisa, “Peran Makan Siang Gratis Dalam Janji Kampanye Prabowo Gibran Dan Realisasinya,” Jolasos J. Law Soc. Soc., pp. 1–10, 2024.
F. N. Zaman, M. A. Fadhilah, M. A. Ulinuha, and K. Umam, “Menganalisis Respons Netizen Twitter Terhadap Program Makan Siang Gratis Menerapkan Nlp Metode Naïve Bayes,” J. Sist. Informasi, Teknol. Inf. dan Komput., vol. 14, no. 3, pp. 150–233, 2024, [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/index
R. A. Hasibuan, D. E. Ratnawati, and R. S. Perdana, “Analisis Sentimen Kebijakan Ekspor Pasir Laut pada Sosial Media Twitter Menggunakan Algoritma Support Vector Machine,” J. Sist. Informasi, Teknol. Informasi, dan Edukasi Sist. Inf., vol. 5, no. 1, pp. 24–33, 2024, doi: 10.25126/justsi.v5i1.373.
L. Nursinggah, R. Ruuhwan, and T. Mufizar, “Analisis Sentimen Pengguna Aplikasi X Terhadap Program Makan Siang Gratis Dengan Metode Naïve Bayes Classifier,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, 2024, doi: 10.23960/jitet.v12i3.4336.
A. Sitanggang, Y. Umaidah, Y. Umaidah, R. I. Adam, and R. I. Adam, “Analisis Sentimen Masyarakat Terhadap Program Makan Siang Gratis Pada Media Sosial X Menggunakan Algoritma Naïve Bayes,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, 2024, doi: 10.23960/jitet.v12i3.4902.
J. M. Br Sembiring and H. H, “Naïve Bayes Algorithm Classification in Sentiment Analysis Covid-19 Wikipedia,” J. Tek. Inform., vol. 3, no. 4, pp. 869–875, 2022, doi: 10.20884/1.jutif.2022.3.4.311.
T. Fadiyah Basar, D. E. Ratnawati, and I. Arwani, “Analisis Sentimen Pengguna Twitter terhadap Pembayaran Cashless menggunakan Shopeepay dengan Algoritma Random Forest,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 3, pp. 1426–1433, 2022, [Online]. Available: http://j-ptiik.ub.ac.id
M. R. U. Pulungan, D. E. Ratnawati, and B. Rahayudi, “Analisis Sentimen Ulasan Aplikasi PeduliLindungi dengan Metode Random Forest,” J. Pengemb. Teknol. Inf. dan Ilmu Komun., vol. 6, no. 9, pp. 4378–4385, 2022, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/download/11582/5142
F. A. Larasati, D. E. Ratnawati, and B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 9, pp. 4305–4313, 2022.
M. Y. Aldean, P. Paradise, and N. A. Setya Nugraha, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 di Twitter Menggunakan Metode Random Forest Classifier (Studi Kasus: Vaksin Sinovac),” J. Informatics, Inf. Syst. Softw. Eng. Appl., vol. 4, no. 2, pp. 64–72, 2022, doi: 10.20895/inista.v4i2.575.
I. Afdhal, R. Kurniawan, I. Iskandar, R. Salambue, E. Budianita, and F. Syafria, “Penerapan Algoritma Random Forest Untuk Analisis Sentimen Komentar Di YouTube Tentang Islamofobia,” J. Nas. Komputasi dan Teknol. Inf., vol. 5, no. 1, pp. 122–130, 2022, [Online]. Available: http://ojs.serambimekkah.ac.id/jnkti/article/view/4004/pdf
D. S. Ningsih and R. R. Suryono, “Comparison of Naïve Bayes and Information Gain Algorithms in Cyberbullying Sentiment Analysis on Twitter Perbandingan Algoritma Naïve Bayes Dan Information Gain,” JUTIF (Jurnal Tek. Inform., vol. 5, no. 4, pp. 1085–1091, 2024.
S. Surya Prabu Al Amin, J. Haerul Jaman, and G. Garno, “Analisis Sentimen Masyarakat Terhadap Penanganan Kasus Penembakan Brigadir J Dengan Algoritma Naïve Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 4, pp. 2519–2526, 2024, doi: 10.36040/jati.v7i4.7126.
M. J. Palepa, N. Pratiwi, and R. Q. Rohmansa, “Analisis Sentimen Masyarakat Tentang Pengaruh Politik Identitas Pada Pemilu 2024 Terhadap Toleransi Beragama Menggunakan Metode K - Nearest Neighbor,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 9, no. 1, pp. 389–401, 2024, doi: 10.29100/jipi.v9i1.4957.
R. Sanjaya, E. Tohidi, E. Wahyudi, and K. Kaslani, “Analisis Sentimen Terhadap Berhentinya Tiktokshop Pada Media Sosial Twitter Menggunakan Algoritma Naïve Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 507–514, 2024, doi: 10.36040/jati.v8i1.8443.
H. C. Husada and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Teknika, vol. 10, no. 1, pp. 18–26, 2021, doi: 10.34148/teknika.v10i1.311.
S. Alam, M. G. Resmi, and N. Masripah, “Classification of Covid-19 vaccine data screening with Naive Bayes algorithm using Knowledge Discovery in database method,” J. Comput. Networks, Archit. High Perform. Comput., vol. 4, no. 2, pp. 177–185, 2022, doi: 10.47709/cnahpc.v4i2.1584.
Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” J. KomtekInfo, vol. 10, pp. 1–7, 2023, doi: 10.35134/komtekinfo.v10i1.330.
T. Ridwansyah, “Implementasi Text Mining Terhadap Analisis Sentimen Masyarakat Dunia Di Twitter Terhadap Kota Medan Menggunakan K-Fold Cross Validation Dan Naïve Bayes Classifier,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 2, no. 5, pp. 178–185, 2022, doi: 10.30865/klik.v2i5.362.
D. Pratmanto and F. F. D. Imaniawan, “Analisis Sentimen Terhadap Aplikasi Canva Menggunakan Algoritma Naive Bayes Dan K-Nearest Neighbors,” Comput. Sci., vol. 3, no. 2, pp. 110–117, 2023, doi: 10.31294/coscience.v3i2.1917.
A. Hendra and F. Fitriyani, “Analisis Sentimen Review Halodoc Menggunakan Nai ̈ve Bayes Classifier,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 6, no. 2, pp. 78–89, 2021, doi: 10.14421/jiska.2021.6.2.78-89.
I. Alamsyah and R. T. Shita, “Penerapan Metode Multinomial Naïve Bayes Untuk Implementation of the Multinomial Naïve Bayes Method To Analyze Sentiment of User Reviews of Wahyoo,” SENAFTI (Prosiding Semin. Nas. Mhs. Fak. Teknol. Inf. ), vol. 2, no. September, pp. 436–444, 2023.
Y. A. Singgalen, “Analisis Sentimen dan Sistem Pendukung Keputusan Menginap di Hotel Menggunakan Metode CRISP-DM dan SAW,” J. Inf. Syst. Res., vol. 4, no. 4, pp. 1343–1353, 2023, doi: 10.47065/josh.v4i4.3917.
M. H. Wicaksono, M. D. Purbolaksono, and S. Al Faraby, “Perbandingan Algoritma Machine Learning untuk Analisis Sentimen Berbasis Aspek pada Review Female Daily,” eProceedings Eng., vol. 10, no. 3, pp. 3591–3600, 2023.
H. Utami, “Analisis Sentimen dari Aplikasi Shopee Indonesia Menggunakan Metode Recurrent Neural Network,” Indones. J. Appl. Stat., vol. 5, no. 1, p. 31, 2022, doi: 10.13057/ijas.v5i1.56825.
G. A. Ramadhan, Analisis sentimen ulasan aplikasi ruangguru dengan algoritma long short term memory. 2023. [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456789/71510%0Ahttps://repository.uinjkt.ac.id/dspace/bitstream/123456789/71510/1/GILANG AMBANG RAMADHAN-FST.pdf
R. Faiz Ananda, A. Syahri, and F. N. Hasan, “Sentiment Analysis of Customer Satisfaction in Gojek and Grab Application Reviews Using the Naive Bayes Algorithm,” J. Tek. Inform. (JUTIF).1, vol. 5, no. 1, pp. 233–241, 1680, [Online]. Available: https://doi.org/10.52436/1.jutif.2024.5.1.1680
M. R. A. Nasution and M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,” J. Inform., vol. 6, no. 2, pp. 226–235, 2019, doi: 10.31311/ji.v6i2.5129.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Opini Publik Program Makan Siang Gratis dengan Random Forest Pada Media
Pages: 1932-1942
Copyright (c) 2024 Muhamad Azhari, Parjito Parjito

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).