Peningkatan Akurasi Temu Kembali Citra Berbasis Konten dengan Modifikasi Kontras Histogram Equalization dan Fast Fourier Transform


  • Budi Hartono * Mail Universitas Stikubank, Semarang, Indonesia
  • Veronica Lusiana Universitas Stikubank, Semarang, Indonesia
  • Sri Eniyati Universitas Stikubank, Semarang, Indonesia
  • (*) Corresponding Author
Keywords: Image Retrieval; Feature Extraction; Histogram Equalization; CBIR

Abstract

Image retrieval is a way to search for images in an image database based on the content or contents of the image or Content-Based Image Retrieval (CBIR). This study aims to develop a retrieval system using Fast Fourier Transform (FFT) for image texture feature extraction. The test image and image database consist of four Batik motif textures—contrast modification using Histogram Equalization. The level of similarity between the test image and the image database is calculated using Manhattan Distance. The study results show a difference in the accuracy of the retrieval results between images without and with contrast modification. In images with contrast modification, the accuracy of the search results increases by 71.4%. System performance is evaluated based on the level of accuracy calculated using the Precision, Recall, and F1-score values. Further research is still needed to test the accuracy of image retrieval results, especially in pre-processing image textures with other batik motifs.

Downloads

Download data is not yet available.

References

D. Srivastava, S.S. Singh, B. Rajitha, M. Verma, M. Kaur, and H.N. Lee, "Content-Based Image Retrieval: A Survey on Local and Global Features Selection, Extraction, epresentation, and Evaluation Parameters," IEEE Access, Volume 11, p.95410-95431, 2023, https://doi.org/10.1109/ACCESS.2023.3308911.

X. Li, J. Yang, and J. Ma, "Recent developments of content-based image retrieval (CBIR)," Neurocomputing, 452, p.675–689, 2021, https://doi.org/10.1016/j.neucom.2020.07.139.

N.K. Rout, M. Atulkar, and M.K. Ahirwal, "A review on content-based image retrieval system: present trends and future challenges," Int. J. Computational Vision and Robotics, Vol. 11, No. 5, p.461-485, 2021, https://doi.org/10.1504/IJCVR.2021.117578.

I.M. Hameed, S.H. Abdulhussain, and B.M. Mahmmod, "Content-based image retrieval: A review of recent trends," Cogent Engineering, 8:1927469, p.1-37, 2021, https://doi.org/10.1080/23311916.2021.1927469.

W.A. Wahyuni, E. Utami, A.D. Hartanto, "Content Based Image Retreival Menggunakan Tamura Texture Fitur Pada Kain Songket Khas Lombok," EXPLORE, Vol. 11, No 2, p.35-39, 2021, https://doi.org/10.35200/explore.v11i2.440.

A.E. Minarno, I. Soesanti, and H.A. Nugroho, "Batik Image Representation using Multi Texton Co-occurrence Histogram," JOIV: Int. J. Inform. Visualization, 8(3-2): IT for Global Goals: Building a Sustainable Tomorrow, p.1582-1589, November 2024, http://dx.doi.org/10.62527/joiv.8.3-2.3095.

A. Aglasia, S.Y. Irianto, S. Karnila, and D. Yuliawati, "Image Sketch Based Criminal Face Recognition Using Content Based Image Retrieval," Scientific Journal of Informatics Vol. 8, No. 2, p.176-182, Nov 2021, https://doi.org/10.15294/sji.v8i2.27865.

I.H. Ikasari, R. Amalia, and P. Rosyani, "Segmentasi Citra Bunga Menggunakan Blob Analisis Building of Informatics," Technology and Science (BITS), Volume 3, No 3, p.228−234, December 2021, https://doi.org/10.47065/bits.v3i3.1050.

H. Syarif, P.N. Andono, "Content Based Image Retrieval Berbasis Color Histogram Untuk Pengklasifikasian Ikan Koi Jenis Kohaku," JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), Vol. 8, No. 2, p. 616-626, Juni 2023, https://doi.org/10.29100/jipi.v8i2.3612

R.C. Gonzalez, R.E. Woods, Digital image processing, 4th Global Edition, Pearson, 2017.

R. Bibi, Z. Mehmood, R.M. Yousaf, T. Saba, M. Sardaraz, and A. Rehman, "Query-by-visual-search: multimodal framework for content-based image retrieval," Journal of Ambient Intelligence and Humanized Computing, Volume 11, p.5629–5648, 2020, https://doi.org/10.1007/s12652-020-01923-1.

A. Kadir, A. Susanto, Teori Dan Aplikasi Pengolahan Citra, Yogyakarta: Penertbit Andi, 2013.

R. Pratama, 2020, https://www.kaggle.com/datasets/rezapratama/motif-batik

Gery X G, 2023, https://www.kaggle.com/datasets/geryxg/corak-batik

V. Lusiana, I.H. Al Amin, and F.A. Sutanto, "Pengaruh Peningkatan Kualitas Citra Menggunakan Modifikasi Kontras Pada Kompresi Data RLE," Building of Informatics, Technology and Science (BITS), Volume 4, No 1, p.270−276, 2022, https://doi.org/10.47065/bits.v4i1.1646.

F.H. Lubis, M. Syahrizal, K. Tampubolon, S. Sinurat, "Peningkatan Kontras Menggunakan Metode Contrast Limited Adaptive Histogram Equalization Pada Citra Paru-Paru Yang Kecanduan Rokok," JURIKOM (Jurnal Riset Komputer), Vol. 8, No. 1, Hal. 15−19, 2021, DOI: http://dx.doi.org/10.30865/jurikom.v7i5.2284.

A. Latif, A. Rasheed, U. Sajid, J. Ahmed, N. Ali, N.I. Ratya, B. Zafar, S.H. Dar, M. Sajid, and T. Khalil, "Content-Based Image Retrieval and Feature Extraction: A Comprehensive Review," Mathematical Problems in Engineering, Volume 2019, Article ID 9658350, 21 pages, 2019, https://doi.org/10.1155/2019/9658350.

J.H. Dewan, S.D. Thepade, "Image Retrieval Using Low Level and Local Features Contents: A Comprehensive Review," Applied Computational Intelligence and Soft Computing, Volume 2020, Article ID 8851931, 20 pages, 2020, https://doi.org/10.1155/2020/8851931.

H.I. Mhaibes, Q.M. Shallal, and M.H. Abood, "A Smart Content-Based Image Retrieval Approach Based on Texture Feature and Slantlet Transform," The International Journal of Electrical and Computer Engineering Systems (IJECES), Vol. 13, No. 8, p.621-631, 2022, DOI: https://doi.org/10.32985/ijeces.13.8.2.

H. Wang, H. Qu, J. Xu, J. Wang, Y. Wei, and Z. Zhang, "Combining Statistical Features and Local Pattern Features for Texture Image Retrieval," IEEE Access, Volume: 8, p.222611-222624, 2020, https://doi.org/10.1109/ACCESS.2020.3043413.

D. Nurnaningsih, D. Alamsyah, A. Herdiansah, and A.A.J. Sinlae, ”Identifikasi Citra Tanaman Obat Jenis Rimpang dengan Euclidean Distance Berdasarkan Ciri Bentuk dan Tekstur,” Building of Informatics, Technology and Science (BITS), vol. 3, no. 3, pp. 171178, 2021, https://doi.org/10.47065/bits.v3i3.1019.

M. Alrahhal, K.P. Supreethi,"Integrating machine learning algorithms for robust content-based image retrieval," International Journal of Information Technology, Volume 16, p.5005–5021, 2024, https://doi.org/10.1007/s41870-024-02169-2.

S. Tena, R. Hartanto, and I. Ardiyanto, "Content-based image retrieval for fabric images: A survey," Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), Vol. 23, No. 3, September 2021, p.1861-1872, http://doi.org/10.11591/ijeecs.v23.i3.pp1861-1872.

K.R. Rao, D.N. Kim, and J.J. Hwang, Fast Fourier Transform: Algorithms and Applications, Springer, 2010.

M.N. Haque, M.S. Uddin, "Accelerating Fast Fourier Transformation for Image Processing using Graphics Processing Unit," Journal of Emerging Trends in Computing and Information Sciences, Volume 2, No.8, p.367-375, 2011.

J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring, the Octave (version 5.1.0) documentation fifth edition, GNU Octave, 2019.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Peningkatan Akurasi Temu Kembali Citra Berbasis Konten dengan Modifikasi Kontras Histogram Equalization dan Fast Fourier Transform

Dimensions Badge
Article History
Submitted: 2024-12-07
Published: 2024-12-19
Abstract View: 44 times
PDF Download: 21 times
How to Cite
Hartono, B., Lusiana, V., & Eniyati, S. (2024). Peningkatan Akurasi Temu Kembali Citra Berbasis Konten dengan Modifikasi Kontras Histogram Equalization dan Fast Fourier Transform. Building of Informatics, Technology and Science (BITS), 6(3), 1732-1741. https://doi.org/10.47065/bits.v6i3.6418
Issue
Section
Articles