Penerapan Algoritma Random Forest dalam Prediksi Curah Hujan untuk Mendukung Analisis Cuaca
Abstract
Indonesia's climate diversity leads to different rainfall patterns in each region. This condition presents a major challenge in the effort to produce accurate rainfall predictions, which are important to support effective infrastructure planning and disaster mitigation. The purpose of this research is to analyze the rainfall potential in Purwodadi Sub-district using Random Forest algorithm. In this analysis, several weather parameters such as air pressure, temperature, humidity, and wind speed are used, while rainfall becomes the target variable in the prediction process. The dataset used in this study was obtained from NASA Prediction Of Worldwide Energy Resources (POWER) with a time period between 2000 and 2022. The data is then divided into 70% for training data and 30% for test data. In this study, the Random Forest algorithm was used to classify the likelihood of rain based on existing weather conditions. The implementation results showed that the Random Forest model achieved 100% accuracy on the training data and 92% on the test data, indicating excellent prediction performance. Results from the confusion matrix confirmed that the majority of the model predictions matched the actual data. This finding shows that the weather parameters used are effective in predicting rainfall in Purwodadi sub-district. This research contributes to improving the accuracy of rainfall prediction and opens up opportunities for the development of better weather prediction models, involving more parameters or using other algorithms for more in-depth performance evaluation.
Downloads
References
W. W. G. Ameto et al., “Perhitungan Debit Limpasan Pada Cv. Klasigi Kabupaten Sorong Provinsi Papua Barat,” INTAN J. Penelit. Tambang, vol. 7, no. 1, pp. 1–6, 2024.
Marthin Luter Laia and Yudi Setyawan, “Perbandingan Hasil Klasifikasi Curah Hujan Menggunakan Metode SVM dan NBC,” J. Stat. Ind. dan Komputasi, vol. 5, no. 2, pp. 51–61, 2020.
M. A. Hasanah, S. Soim, and A. S. Handayani, “Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir,” J. Appl. Informatics Comput., vol. 5, no. 2, pp. 103–108, 2021, doi: 10.30871/jaic.v5i2.3200.
R. F. Firdaus, “Prediksi Curah Hujan Menggunakan Metode Long Short Term Memory ( Studi Kasus : Kota Bandung ) Prediksi Curah Hujan Menggunakan Metode Long Short Term Memory ( Studi Kasus : Kota Bandung ),” 2022.
A. Luthfiarta, A. Febriyanto, H. Lestiawan, and W. Wicaksono, “Analisa Prakiraan Cuaca dengan Parameter Suhu, Kelembaban, Tekanan Udara, dan Kecepatan Angin Menggunakan Regresi Linear Berganda,” JOINS (Journal Inf. Syst., vol. 5, no. 1, pp. 10–17, 2020, doi: 10.33633/joins.v5i1.2760.
S. S. Sanusi W., Statistika Untuk Pemodelan Data Curah Hujan, vol. 53, no. 9. 2016.
B. L. Al Zakina, Z. Zainuddin, T. B. Santoso, and L. Safitri, “Penyuluhan Mitigasi Bencana Banjir Sebagai Upaya Kesiapsiagaan Bencana Di Kota Purwodadi,” J. Hum. Educ., vol. 4, no. 4, pp. 80–84, 2024, doi: 10.31004/jh.v4i4.1147.
M. I. Ananta, L. M. Limantara, J. S. Fidari, and H. Nurdin, “Analisa Curah Hujan Rancangan Di Daerah Aliran Sungai Bendungan Manikin Kabupaten Kupang,” J. Tek. Sipil, vol. 13, no. 1, pp. 67–78, 2024.
A. S. Nugroho and A. G. Daniamiseno, “Pengembangan E-Book Mitigasi Bencana Gunung Api Berbasis Prinsip-Prinsip Desain Pesan Pembelajaran untuk Siswa Sekolah Menengah Pertama,” J. Inov. Teknol. Pendidik., vol. 9, no. 1, pp. 114–122, 2022, doi: 10.21831/jitp.v9i1.21690.
Y. Setiawan, E. P. Purwandari, A. Wijanarko, and E. Sunandi, “Pemetaan Zonasi Rawan Banjir Dengan Analisis Indeks Rawan Banjir Menggunakan Metode Fuzzy Simple Adaptive Weighting,” Pseudocode, vol. 7, no. 1, pp. 78–87, 2020, doi: 10.33369/pseudocode.7.1.78-87.
P. Rahayu et al., Buku Ajar Data Mining, vol. 1, no. January 2024. PT. Sonpedia Publishing Indonesia, 2024.
A. Fahraini, D. Achmad Rusdiansyah, J. A. Jenderal Yani Km, and K. Selatan, “Analisis Keandalan Metode Analisa Frekuensi Dan Intensitas Hujan Berdasarkan Data Curah Hujan Klimatologi Banjarbaru,” Sustain. Technol. Journal), vol. 9, no. 1, pp. 11–23, 2020, [Online]. Available: http://jtb.ulm.ac.id/index.php/JTB
NASA, “NASA Prediction Of Worldwide Energy Resources (POWER) | Data Access Viewer (DAV),” https://power.larc.nasa.gov/. Accessed: Oct. 16, 2024. [Online]. Available: https://power.larc.nasa.gov/data-access-viewer/
M. Haditama Rifan, “Analisis Dan Pembuatan Dashboard Prediksi KelulusanMahasiswa Menggunakan Metode Random Forest, NaïveBayes Dan Support Vector Machine,” Anal. Dan Pembuatan Dashboard Prediksi Kelulusan Mhs. Menggunakan Metod. Random For. Naïve Bayes Dan Support Vector Mach., p. 1159, 2023.
A. H. Harahap, I. M. B. A. Malik, M. I. N. Imam, M. T. S. Bilhaq, A. A. Nur, and S. L. D. Agustini, “Klasifikasi Diagnosa Penyakit Jantung menggunakan Algoritma Random Forest,” Tek. Inform. UIN Sunan Gunung Djati Bandung, vol. 3, pp. 1–51, 2021.
H. Hidayat, E. Azzahra, F. Bioresita, and K. Pronojiwo, “Analisa Perubahan Tutupan Lahan Akibat Letusan Gunung Semeru Tahun 2021 dengan Algoritma Random Forest ( Studi Kasus : Kecamatan Pronojiwo , Kabupaten Lumajang ) Pendahuluan Indonesia merupakan negara dengan luas wilayah sekitar 1 , 905 juta km2 serta ter,” vol. 19, no. 2, pp. 236–245, 2024.
A. Fauzan and D. Ahmad, “Analisis Hasil Prediksi Magnitudo Gempa Di Wilayah Kota Padang Menggunakan Teknik Random Forest,” J. Lebesgue J. Ilm. Pendidik. Mat. Mat. dan Stat., vol. 4, no. 3, pp. 1569–1576, 2023, doi: 10.46306/lb.v4i3.450.
A. Y. Isnaeni and S. Y. J. Prasetyo, “Klasifikasi Wilayah Potensi Risiko Kerusakan Lahan Akibat Bencana Tsunami Menggunakan Machine Learning,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 1, pp. 33–42, 2022, doi: 10.28932/jutisi.v8i1.4056.
I. Kurniawan, D. C. P. Buani, A. Abdussomad, W. Apriliah, and R. A. Saputra, “Implementasi Algoritma Random Forest Untuk Menentukan Penerima Bantuan Raskin,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 2, pp. 421–428, 2023, doi: 10.25126/jtiik.20231026225.
N. H. Putri, R. H. Dananjaya, and N. S. Surjandari, “Aplikasi Machine Learning Method pada Pemetaan Kerawanan Tanah Longsor di Kabupaten Karanganyar,” Media Komun. Dunia Ilmu Sipil, vol. 6, no. 1, pp. 23–34, 2024, [Online]. Available: https://journal.univetbantara.ac.id/index.php/modulus/article/view/4490
N. A. Prakoso Indaryono, “Analisa Perbandingan Algoritma Random Forest Dan Naïve Bayes Untuk Klasifikasi Curah Hujan Berdasarkan Iklim Di Indonesia,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 9, no. 1, pp. 158–167, 2024, doi: 10.29100/jipi.v9i1.4421.
A. S. Syuhada, A. M. Simanullang, D. S. Lewa, and S. Jefry Marthin, “Makalah Pembelajaran Mesin ( Machine Learning ),” Makal. Pembelajaran Mesin (machine Learn. ), pp. 1–11, 2021.
Y. N. R. Putro, A. Afriansyah, and R. Bagaskara, “Penggunaan Algoritma Gaussian Naïve Bayes & Decision Tree Untuk Klasifikasi Tingkat Kemenangan Pada Game Mobile Legends,” JUKI J. Komput. dan Inform., vol. 6, no. 1, pp. 10–26, 2024, doi: 10.53842/juki.v6i1.472.
D. Prasetyawan and R. Gatra, “Algoritma K-Nearest Neighbor untuk Memprediksi Prestasi Mahasiswa Berdasarkan Latar Belakang Pendidikan dan Ekonomi,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 7, no. 1, pp. 56–67, 2022, doi: 10.14421/jiska.2022.7.1.56-67.
Google, “Google Colab,” https://colab.google/. Accessed: Oct. 21, 2024. [Online]. Available: https://colab.google/
P. Kurniawan and H. W. Nugroho, “Implementasi Data Mining Dalam Klasifikasi Tingkat Kesenjangan Kompetensi PNS Menggunakan Metode Naive Bayes,” vol. 6, no. 2, pp. 835–846, 2024, doi: 10.47065/bits.v6i2.5641.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Algoritma Random Forest dalam Prediksi Curah Hujan untuk Mendukung Analisis Cuaca
Pages: 1688-1699
Copyright (c) 2024 Rizal Torhino, Pulung Nurtantio Andono

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).