Penerapan Metode K-Means Untuk Pengelompokkan Data Pelaporan Di Kantor Urusan Agama
Abstract
The process of reporting marriages at the Religious Affairs Office (KUA) in Laubaleng District is still done manually, which results in obstacles in the management, accuracy and efficiency of data access. This research aims to overcome this problem through developing a system based on the K-Means clustering method. This system is designed to group marriage reporting data based on attributes such as age, marital status, and month of marriage, so as to provide a more structured and informative data pattern. The Elbow method is used to determine the optimal number of clusters, while the K-Means algorithm is applied using Euclidean distance to calculate the closeness of the data to the centroid. The research process involves collecting reporting data from 2019 to 2024, data preprocessing, normalization, and evaluating clustering results using the Davies-Bouldin Index (DBI). The research results show that the K-Means method is effective in grouping data, providing clear visualization of the distribution of marriage patterns, and increasing the efficiency of data management at KUA. With this system, KUA can increase access speed, reduce the potential for errors, and support more accurate data-based decision making.
Downloads
References
Ahmad Agung Setya Budi, “Kawin Paksa Dalam Perspektif Hukum Islam Dan Konteks Kajian Hak Asasi Manusia,” Jurnal Dunia Ilmu Hukum (JURDIKUM), vol. 1, no. 2, pp. 44–49, Sep. 2023, doi: 10.59435/jurdikum.v1i2.168.
B. Ulum and A. Muzawwir, “Analisis Pertimbangan Hakim Lama Pacaran Sebagai Alasan Mendesak Mengabulkan Permohonan Dispensasi Nikah Dini Study Putusan Nomor: 354/Pdt. P/2022/Pa Bangkalan,” Al-Ibrah: Jurnal Pendidikan dan Keilmuan Islam, vol. 8, no. 2, pp. 92–111, 2023.
A. A. Musyafah, J. Sudarto, and J. Tengah, “Perkawinan Dalam Perspektif Filosofis Hukum Islam,” Crepido, no. 2, pp. 111–122, 2020, doi: 10.14710/nts.v12i1.28897.
Kevin Marpaung, “Penerapan Sistem Informasi Manajemen Nikah (Simkah) Berbasis Web Di Kantor Urusan Agama Kecamatan Kedaton Kota Bandar Lampung,” Universitas Lampung , Bandar Lampung, 2022.
H. R. U. Sembiring, Membangun Pribadi Prima Dalam Pelayanan Publik. Media Nusa Creative (MNC Publishing), 2021.
S. Syam et al., Data Mining: Teori dan Penerapannya dalam Berbagai Bidang. PT. Sonpedia Publishing Indonesia, 2024.
M. T. Jatipaningrum, S. E. Azhari, and K. Suryowati, “Pengelompokan Kabupaten Dan Kota Di Provinsi Jawa Timur Berdasarkan Tingkat Kesejahteraan Dengan Metode K-Means Dan Density-Based Spatial Clustering Of Applications With Noise,” Jurnal Derivat, vol. 9, no. 1, 2022.
Ramadhana, Islamiyah, and A. P. A. Masa, “Penerapan Data Mining Menggunakan Metode K-Means Clustering Pada Data Ekspor Batubara,” Adopsi Teknologi dan Sistem Informasi (ATASI), vol. 2, no. 1, pp. 35–42, Jun. 2023, doi: 10.30872/atasi.v2i1.595.
R. Swastika, S. Mukodimah, F. Susanto, M. Muslihudin, and S. I. P. Adab, IMPLEMENTASI DATA MINING (Clastering, Association, Prediction, Estimation, Classification). Penerbit Adab, 2023.
H. Astuti, “Penerapan data mining menggunakan metode k-means clustering untuk pengelompokkan data pelanggan (studi kasus: pt. pinus merah abadi),” Jurnal Web Informatika Teknologi, vol. 6, no. 1, pp. 1–8, 2021.
A. Nugraha, O. Nurdiawan, and G. Dwilestari, “Penerapan Data Mining Metode K-Means Clustering Untuk Analisa Penjualan Pada Toko Yana Sport,” Jurnal Mahasiswa Teknik Informatika), vol. 6, no. 2, pp. 849–855, 2022.
H. Priyatman, F. Sajid, and D. Haldivany, “JEPIN (Jurnal Edukasi dan Penelitian Informatika) Klasterisasi Menggunakan Algoritma K-Means Clustering untuk Memprediksi Waktu Kelulusan Mahasiswa,” vol. 5, no. 1, pp. 62–66, 2019.
G. Gustientiedina, M. H. Adiya, and Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 5, no. 1, pp. 17–24, Apr. 2019, doi: 10.25077/teknosi.v5i1.2019.17-24.
L. Petra Refialy, H. Maitimu, and M. Soyano Pesulima, “Perbaikan Kinerja Clustering K-Means pada Data Ekonomi Nelayan dengan Perhitungan Sum of Square Error (SSE) dan Optimasi nilai K cluster,” Techno.COM, vol. 20, no. 2, pp. 321–329, 2021.
Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” Jurnal Teknologi dan Sistem Informasi (JTSI), vol. 2, no. 2, p. 100, 2021.
N. U. R. H. Tambunan, “Analisis Data Mining Clustering Tentang Tingkat Kesejahteraan Di Desa Karang Anyar Menggunakan Metode K-Means,” 2024, Universitas Labuhanbatu.
I. Y. Beti and H. Juliansa, “Penerapan Normalisasi Data Metode Decimal Scaling Dan Metode K-Means Dalam Mengelompokkan Kasus Demam Berdarah,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 6, pp. 2928–2936, 2024.
R. F. Putra et al., Data Mining: Algoritma dan Penerapannya. PT. Sonpedia Publishing Indonesia, 2023.
F. Indriyani and E. Irfiani, “Clustering Data Penjualan pada Toko Perlengkapan Outdoor Menggunakan Metode K-Means (Clustering Sales Data at Outdoor Equipment Stores Using K- Means Method),” JUITA: Jurnal Informatika, vol. 7, no. 2, pp. 109–113, 2019.
R. Kinanti, “Penerapan Metode Clustering K-Means untuk Menentukan Prioritas Penerima Bantuan Program Beras untuk Rakyat Miskin (Raskin) Studi Kasus: Kecamatan Siulak,” Jurnal Informatika Dan Rekayasa Komputer (JAKAKOM), vol. 4, no. 2, 2024, doi: 10.33998/jakakom.v4i2.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Metode K-Means Untuk Pengelompokkan Data Pelaporan Di Kantor Urusan Agama
Pages: 2085-2093
Copyright (c) 2024 Nur Hayatin Nufus, Sriani Sriani

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).