Komparasi Metode BERT, VADER, dan RoBERTa untuk Analisis Sentimen Masyarakat terhadap Keputusan Pasangan


  • Debi Safa Nurdewanti Universitas Semarang, Semarang, Indonesia
  • Rastri Prathivi * Mail Universitas Semarang, Semarang, Indonesia
  • (*) Corresponding Author
Keywords: Childfree; Sentiment Analysis; BERT; RoBERTa; VADER

Abstract

This research discusses the phenomenon of childfree in Indonesia, which is increasingly being discussed in line with social and economic changes. Although a negative stigma is still attached to a couple's decision not to have children, public awareness of the childfree option continues to increase. This study aims to analyze public sentiment towards childfree decisions using three sentiment analysis methods, namely BERT, RoBERTa, and VADER. The analysis results show that the BERT method has the highest accuracy of 99%, signaling its ability to classify sentiment very accurately. In contrast, the RoBERTa and VADER methods show lower accuracy, at 50% and 41% respectively. Both methods had difficulty in distinguishing the sentiment classes, which resulted in many misclassifications. Evaluation using the confusion matrix shows that RoBERTa and VADER have a significant number of misclassifications, with RoBERTa having 9 FPs and 19 FNs, and VADER having 16 FPs and 84 FNs. Meanwhile, BERT has almost no errors in classification, with a total FP of 0 and FN of 1. These results confirm that the BERT method is superior for sentiment analysis of the childfree phenomenon compared to the RoBERTa and VADER methods. This research provides insight into how people view the childfree phenomenon and finds the best sentiment analysis method among the three methods.

Downloads

Download data is not yet available.

References

M. Jenuri, Rindu Fajar Islamy, K. Siti Komariah, D. Mayadiana Suwarma, and A. Hafidzani Nur Fitria, “Fenomena Childfree di Era Modern: Studi Fenomenologis Generasi Z serta Pandangan Islam terhadap Childfree di Indonesia,” Sos. Budaya, vol. 19, no. 2, pp. 81–89, 2022, [Online]. Available: http://dx.doi.org/10.24014/sb.v19i2.16602

V. M. Tunggono, Childfree & Happy. EA Books, 2021. [Online]. Available: https://books.google.co.id/books?id=70KGEAAAQBAJ

D. Rahman, A. S. Fitria, D. A. Lutfiyanti, I. Irfan M R, S. M. P. Fadillah, and M. Parhan, “Childfree dalam Perspektif Islam: Solusi atau Kontroversi?,” J. Wan. dan Kel., vol. 4, no. 1, pp. 1–14, 2023, doi: 10.22146/jwk.7964.

S. G. R. Nasution Chairul Majid, “Fenomena Childfree Berdasarkan Perspektif Hukum Islam Progresif, Pancasila dan Hak Asasi Manusia (HAM),” J. Keislam., vol. 7, no. 1, pp. 66–79, 2024, doi: https://doi.org/10.54298/jk.v7i1.239.

A. Adhandayani, A. T. Febrianti, N. I. Maulida, and R. Asfrillah, “Kepuasan Pernikahan Tanpa Anak: Sebuah Studi Fenomenologi,” J. Psikogenes., vol. 10, no. 1, pp. 76–88, 2023, doi: 10.24854/jps.v10i1.2846.

M. Patnani, B. Takwin, and W. W. Mansoer, “Bahagia tanpa anak? Arti penting anak bagi involuntary childless,” J. Ilm. Psikol. Terap., vol. 9, no. 1, p. 117, 2021, doi: 10.22219/jipt.v9i1.14260.

N. F. Nallanie Farrencia, “Childfree di Indonesia, Fenomena Atau Viral Sesaat?,” Syntax Idea, vol. 15, no. 1, pp. 37–48, 2024, doi: https://doi.org/10.46799/syntax-idea.v6i6.3457.

A. S. P. Prasmono and M. D. Kartikasari, “The Childfree Phenomenon in Indonesia: An Analysis of Sentiments on YouTube Video Comments,” Jambura J. Math., vol. 6, no. 1, pp. 29–38, 2024, doi: 10.37905/jjom.v6i1.23591.

U. Khasanah and M. R. Ridho, “Childfree Perspektif Hak Reproduksi Perempuan Dalam Islam,” Al-Syakhsiyyah J. Law Fam. Stud., vol. 3, no. 2, pp. 104–128, 2021, doi: 10.21154/syakhsiyyah.v3i2.3454.

I. Leliana, I. Suryani, A. Haikal, and R. Septian, “Respon Masyarakat Mengenai Fenomena ‘Childfree’ (Studi Kasus influencer Gita Savitri),” vol. 23, no. 1, pp. 36–43, 2020, [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/cakrawala

Y. He, N. E. T. A. Wahab, H. Muhamad, and D. Liu, “The marital and fertility sentiment orientation of Chinese women and its influencing factors - An analysis based on natural language processing,” PLoS One, vol. 19, no. 2 February, pp. 1–23, 2024, doi: 10.1371/journal.pone.0296910.

F. N. A. Hendro Margono, “Analisis Sentimen Komentar Childfree di Aplikasi X Menggunakan Naive Bayes,” Indones. J. Comput. Sci., vol. 12, no. 2, pp. 284–301, 2024, doi: https://doi.org/10.33022/ijcs.v13i3.3883.

D. Siregar, F. Ladayya, N. Z. Albaqi, and B. M. Wardana, “Penerapan Metode Support Vector Machines (SVM) dan Metode Naïve Bayes Classifier (NBC) dalam Analisis Sentimen Publik terhadap Konsep Child-free di Media Sosial Twitter,” J. Stat. dan Apl., vol. 7, no. 1, pp. 93–104, 2023, doi: https://doi.org/10.21009/JSA.07109.

F. Agustine, A. Ompo, M. A. I. Pakereng, T. Informatika, U. Kristen, and S. Wacana, “Penerapan Text Mining Untuk Advertising Pada Data Tweets Zalora Indonesia Dengan Menggunakan Metode K-Means Clustering,” Progresif J. Ilm. Komput., vol. 20, no. 1, pp. 314–324, 2024, doi: http://dx.doi.org/10.35889/progresif.v20i1.1576.

R. Nainggolan, F. Adline, T. Tobing, and E. J. G. Harianja, “Analysis Sentiment in Bukalapak Comments with K-Means Clustering Method,” Int. J. New Media Technol., vol. 9, no. 2, pp. 87–92, 2022, doi: https://doi.org/10.31937/ijnmt.v9i2.2914.

Muhammad Fernanda Naufal Fathoni, Eva Yulia Puspaningrum, and Andreas Nugroho Sihananto, “Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM,” Modem J. Inform. dan Sains Teknol., vol. 2, no. 3, pp. 62–76, 2024, doi: 10.62951/modem.v2i3.112.

M. V Koroteev, “BERT: A Review of Applications in Natural Language Processing and Understanding,” arXiv Prepr., vol. 1, p. 18, 2021, doi: https://doi.org/10.48550/arXiv.2103.11943.

F. Basbeth and D. H. Fudholi, “Klasifikasi Emosi Pada Data Text Bahasa Indonesia Menggunakan Algoritma BERT, RoBERTa, dan Distil-BERT,” J. Media Inform. Budidarma, vol. 8, no. 2, p. 1160, 2024, doi: 10.30865/mib.v8i2.7472.

S. N. K. Nurmadewi Dita, Jailani Zakiul Fahmi, “Perbandingan Performa Algoritma VADER dan RoBERTa pada Twitter Comparison of VADER and RoBERTa Algorithm Performance on,” Sistemasi, vol. 13, no. 4, pp. 1547–1557, 2024, doi: https://doi.org/10.32520/stmsi.v13i4.4198.

A. G. Yuda, “Comparison of Service and Ease of e-Commerce User Applications Using BERT,” J. Sist. Cerdas, vol. 07, no. 02, pp. 98–107, 2024, doi: https://doi.org/10.37396/jsc.v7i2.403.

B. Setiadi, E. Purwanto, and H. Permatasari, “Optimisasi Klasifikasi Sentimen Pada Review Hotel Bahasa Inggris Dengan Model Roberta Twitter,” SINTECH (Science Inf. Technol. J., vol. 7, no. 2, pp. 70–79, 2024, doi: 10.31598/sintechjournal.v7i2.1547.

E. Elinda, H. Yuliansyah, and M. I. A. Latiffi, “Sentiment Analysis of the Sheikh Zayed Grand Mosque’s Visitor Reviews on Google Maps Using the VADER Method,” Int. J. Adv. Data Inf. Syst., vol. 5, no. 1, pp. 71–84, 2024, doi: 10.59395/ijadis.v5i1.1320.

S. A. Putra and A. Wijaya, “Analisis Sentimen Artificial Intelligence (Ai) Pada Media Sosial Twitter Menggunakan Metode Lexicon Based,” JuSiTik J. Sist. dan Teknol. Inf. Komun., vol. 7, no. 1, pp. 21–28, 2023, doi: 10.32524/jusitik.v7i1.1042.

R. Darman, “Analisis Sentimen Respons Twitter terhadap Persyaratan Badan Penyelenggara Jaminan Sosial (BPJS) di Kantor Pertanahan,” Widya Bhumi, vol. 3, no. 2, pp. 113–136, 2023, doi: 10.31292/wb.v3i2.61.

A. Jaya, “Analisis Sentimen Pandangan Public Profesi PNS (Pegawai Negeri Sipil) dari Twiter menerapkan indonesian Roberta Base Sentiment Classifier,” Indones. J. Data Sci., vol. 4, no. 1, pp. 38–44, 2023, doi: 10.56705/ijodas.v4i1.66.

P. Rahayu et al., Buku Ajar Data Mining, vol. 1. Jambi: PT. Sonpedia Publishing Indonesia, 2024. [Online]. Available: https://books.google.co.id/books?id=vCruEAAAQBAJ

S. W. Iriananda, R. P. Putra, and A. Farhan, “Kinerja Auto Labelling Pada Analisis Sentimen Terhadap Pasangan Calon Presiden 2024 Di Media Sosial X,” Conf. Innov. Appl. Sci. Technol., vol. 6, no. 1, p. 618, 2023, doi: 10.31328/ciastech.v6i1.5354.

S. N. V. Sihombing Yogie Oktavianus, “Prediksi Sentimen Pada Teks Media Sosial Corporate University Menggunakan RoBERTa,” Pros. PITNAS Widyaiswara, vol. 1, pp. 302–316, 2024.

A. Kulkarni, D. Chong, and F. A. Batarseh, “Foundations of data imbalance and solutions for a data democracy,” Data Democr. Nexus Artif. Intell. Softw. Dev. Knowl. Eng., pp. 83–106, 2020, doi: 10.1016/B978-0-12-818366-3.00005-8.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Komparasi Metode BERT, VADER, dan RoBERTa untuk Analisis Sentimen Masyarakat terhadap Keputusan Pasangan

Dimensions Badge
Article History
Submitted: 2024-11-19
Published: 2024-12-18
Abstract View: 74 times
PDF Download: 31 times
How to Cite
Nurdewanti, D., & Prathivi, R. (2024). Komparasi Metode BERT, VADER, dan RoBERTa untuk Analisis Sentimen Masyarakat terhadap Keputusan Pasangan. Building of Informatics, Technology and Science (BITS), 6(3), 1648-1657. https://doi.org/10.47065/bits.v6i3.6306
Issue
Section
Articles