Kombinasi Inisialisasi Hyperparameter dan Algoritma Adam untuk Optimasi Model Gated Recurrent Unit dalam Meramalkan Harga Penutupan Saham Pasca Isu Boikot
Abstract
This research aims to enhance the accuracy of daily closing price forecasting for PT Unilever Indonesia Tbk shares by optimizing a Gated Recurrent Unit (GRU) model, a deep learning architecture. The study focuses on the impact of boycott issues on company performance and explores the effectiveness of hyperparameter tuning and the Adam optimization algorithm. Utilizing a five-year historical dataset, time series analysis was employed. The results demonstrate that the GRU model with a configuration of 50 epochs, batch size 8, hidden state 64, and default Adam parameters achieved the lowest Mean Absolute Percentage Error (MAPE) of 1.59% and Root Mean Squared Error (RMSE) of 71.51 among the 81 configurations tested. While higher Adam parameter settings also yielded satisfactory results, this specific configuration exhibited superior performance. The findings highlight the sensitivity of model accuracy to sharp price fluctuations, suggesting that shorter forecast horizons may be more appropriate. This research contributes significantly to the advancement of accurate and reliable stock price forecasting models.
Downloads
References
M. Heriyanto, “Investor pasar modal Indonesia capai 12,13 juta SID per Desember 2023,” AntaraNews. Accessed: Jul. 30, 2024. [Online]. Available: https://www.antaranews.com/berita/3889137/investor-pasar-modal-indonesia-capai-1213-juta-sid-per-desember-2023
M. Firman, “Strategi Public Relations Unilever Indonesia dalam Menjaga Reputasi Pasca Isu Boikot Pro-Israel,” Jurnal Ilmiah Ekonomi Dan Manajemen, vol. 2, no. 6, pp. 171–178, 2024, doi: 10.61722/jiem.v2i6.1319.
P. L. Puji and T. Jazil, “The Role of Religiosity, Consumer Animosity, and Ethnocentrism in Explaining the Boycott Motivation,” Journal of Islamic Economics and Finance Studies, vol. 5, no. 1, pp. 134–152, Jun. 2024, doi: 10.47700/jiefes.v5i1.7755.
S. Sarah Maesaroh, M. Sandi Marta, and M. Sari, “Uji Beda Dampak Pandemi Covid 19: Pengaruh Pertumbuhan Aset, Profitabilitas, dan Struktur Modal terhadap Nilai Perusahaan Sub Sektor Restoran, Hotel & Pariwisata,” OPTMAL: Jurnal Ekonomi dan Kewirausahaan, vol. 14, no. 2, pp. 76–90, 2020, doi: 10.33558/optimal.v14i2.3099.
A. T. Oyewole, O. B. Adeoye, W. A. Addy, C. C. Okoye, O. C. Ofodile, and C. E. Ugochukwu, “Predicting Stock Market Movement using Neural Network: A Review and Application Study,” Computer Science & IT Research Journal, vol. 5, no. 3, pp. 651–670, Mar. 2024, doi: 10.51594/csitrj.v5i3.912.
N. W. Meri Aryati, I. K. A. G. Wiguna, N. W. S. Putri, I. K. K. Widiartha, and N. L. W. S. R. Ginantra, “Komparasi Metode LSTM dan GRU dalam Memprediksi Harga Saham,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 8, no. 2, p. 1131, Apr. 2024, doi: 10.30865/mib.v8i2.7342.
N. L. W. S. R. Ginantra, I. M. D. P. Asana, W. G. S. Parwita, and M. L. D. Wiadnyana, “Forecasting System Analysis using Gated Recurrent Unit Neural Network,” Journal of System and Management Sciences, vol. 13, no. 5, pp. 470–482, 2023, doi: 10.33168/JSMS.2023.0530.
K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation,” Jun. 2014, doi: 10.3115/v1/D14-1179.
S. Zhang, E. Robinson, and M. Basu, “Wind power forecasting based on a novel gated recurrent neural network model,” Wind Energy and Engineering Research, vol. 1, p. 100004, Aug. 2024, doi: 10.1016/j.weer.2024.100004.
A. Rahmadeyan and Mustakim, “Long Short-Term Memory and Gated Recurrent Unit for Stock Price Prediction,” in Procedia Computer Science, Elsevier B.V., 2024, pp. 204–212. doi: 10.1016/j.procs.2024.02.167.
M. Ghadimpour and S. B. Ebrahimi, “Forecasting Financial Time Series Using Deep Learning Networks: Evidence from Long-Short Term Memory and Gated Recurrent Unit,” Iranian Journal of Finance, vol. 6, no. 4, pp. 81–94, Oct. 2022, doi: 10.30699/ijf.2022.313164.1286.
A. Nilsen, “Perbandingan Model RNN, Model LSTM, dan Model GRU dalam Memprediksi Harga Saham-Saham LQ45,” Jurnal Statistika dan Aplikasinya, vol. 6, no. 1, Jun. 2022, doi: 10.21009/JSA.06113.
K. Sofi, A. S. Sunge, S. R. Riady, and A. Z. Kamalia, “Perbandingan Algoritma Linear Regression, LSTM, dan GRU dalam Memprediksi Harga Saham dengan Model Time Series,” SEMINASTIKA, vol. 3, no. 1, pp. 39–46, Nov. 2021, doi: 10.47002/seminastika.v3i1.275.
P. N and S. Sugave, “Optimizing Machine Learning Models: An Adaptive Hyperparameter Tuning Approach,” International Journal of Intelligent Systems and Applications in Engineering, vol. 11, no. 4, pp. 344–354, Jul. 2023, Accessed: Nov. 10, 2024. [Online]. Available: https://ijisae.org/index.php/IJISAE/article/view/3532
T. Yu and H. Zhu, “Hyper-Parameter Optimization: A Review of Algorithms and Applications,” Mar. 2020, doi: 10.48550/arXiv.2003.05689.
D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization,” Dec. 2014, doi: 10.48550/arXiv.1412.6980.
M. F. Cahyadi and T. H. Rochadiani, “Implementasi Ensemble Deep Learning Untuk Analisis Sentimen Terhadap Genre Game Mobile,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 8, no. 3, p. 1512, Jul. 2024, doi: 10.30865/mib.v8i3.7832.
S. Lakshmi and C. P. Maheswaran, “Effective deep learning based grade prediction system using gated recurrent unit (GRU) with feature optimization using analysis of variance (ANOVA),” Automatika, vol. 65, no. 2, pp. 425–440, 2024, doi: 10.1080/00051144.2023.2296790.
A. Makinde, “Optimizing Time Series Forecasting: A Comparative Study of Adam and Nesterov Accelerated Gradient on LSTM and GRU networks Using Stock Market data,” Sep. 2024, doi: 10.48550/arXiv.2410.01843.
M. Citra, “Comparative Study of Stock Price Forecasting Models PT. Unilever Indonesia Tbk Using Arima and Garch,” International Journal of Community Service, vol. 02, no. 01, pp. 1–22, 2021, doi: 10.55299/ijcs.v1i2.220.
R. W. Wilda, M. A. Sukmarini, and A. C. Mahar, “Prediksi Harga Saham PT. Unilever Indonesia Tbk dengan Metode Regresi Linier Sederhana,” Balance: Media Informasi Akuntansi dan Keuangan, vol. 16, no. 2, pp. 76–81, Jul. 2024, doi: 10.52300/blnc.v16i2.14249.
A. D. Pramesti and W. Sulistijanti, “ARIMA-GARCH Model Price Forecasting in PT. Unilever Indonesia Tbk,” EKSYAR : Jurnal Ekonomi Syari’ah & Bisnis Islam, vol. 10, no. 1, pp. 147–156, Aug. 2023, doi: 10.54956/eksyar.v10i1.459.
P. D. Sugiyono, Educational Research Methods (Quantitative, Qualitative, Combination, R&d and Educational Research). Educational Research Methods, 2019.
J. Sun and Y. Xia, “Pretreating and normalizing metabolomics data for statistical analysis,” Genes Dis, vol. 11, no. 3, pp. 2–18, May 2024, doi: 10.1016/j.gendis.2023.04.018.
L. Zaman, S. Sumpeno, and M. Hariadi, “Analisis Kinerja LSTM dan GRU sebagai Model Generatif untuk Tari Remo,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 8, no. 2, pp. 142–150, May 2019, doi: 10.22146/jnteti.v8i2.503.
A. Gulli, S. Pal, and A. Kapoor, Deep learning with TensorFlow 2 and Keras: regression, ConvNets, GANs, RNNs, NLP, and more with TensorFlow 2 and the Keras API, Second Edition. Packt Publishing Ltd, 2019.
S. Mohsen, “Recognition of human activity using GRU deep learning algorithm,” Multimed Tools Appl, vol. 82, no. 30, pp. 47733–47749, Dec. 2023, doi: 10.1007/s11042-023-15571-y.
J. A. Ripto and H. Heryanto, “Penerapan Gated Recurrent Unit untuk Prediksi Pergerakan Harga Saham pada Bursa Efek Indonesia,” Doctoral Dissertation, Institut Teknologi Harapan Bangsa, Bandung, 2022.
L. Sufriyah, A. Fanani, A. Hamid, N. Ulinnuha, and K. Intan, “Peramalan Harga Emas dengan Metode Backpropagation Neural Network (Studi Kasus: PT. Aneka Tambang Tbk),” Scientica: Jurnal Ilmiah Sains dan Teknologi, vol. 2, no. 12, pp. 888–898, Sep. 2024, doi: 10.572349/scientica.v2i12.3479.
A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition. O’Reilly Media, Inc, 2022.
S. Hansun and J. C. Young, “Predicting LQ45 financial sector indices using RNN-LSTM,” J Big Data, vol. 8, no. 1, Dec. 2021, doi: 10.1186/s40537-021-00495-x.
A. Kurniawati, M. Sabri Ahmad, M. Fhadli, and S. Lutfi, “Analisis Perbandingan Metode Time Series Forecasting untuk Prediksi Penjualan Obat di Apotek (Studi Kasus: Kimia Farma Apotek Takoma),” Jurnal Jaringan dan Teknologi Informasi, vol. 3, no. 1, pp. 96–106, 2023, Accessed: Nov. 10, 2024. [Online]. Available: https://e-journal.unkhair.ac.id/index.php/jati/article/view/62
Moch Farryz Rizkilloh and Sri Widiyanesti, “Prediksi Harga Cryptocurrency Menggunakan Algoritma Long Short Term Memory (LSTM),” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 1, pp. 25–31, Feb. 2022, doi: 10.29207/resti.v6i1.3630.
H. Hewamalage, K. Ackermann, and C. Bergmeir, “Forecast evaluation for data scientists: common pitfalls and best practices,” Data Min Knowl Discov, vol. 37, no. 2, pp. 788–832, Mar. 2023, doi: 10.1007/s10618-022-00894-5.
R. Gelar Guntara, “Pemanfaatan Google Colab Untuk Aplikasi Pendeteksian Masker Wajah Menggunakan Algoritma Deep Learning YOLOv7,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 5, no. 1, pp. 55–60, Feb. 2023, doi: 10.47233/jteksis.v5i1.750.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Kombinasi Inisialisasi Hyperparameter dan Algoritma Adam untuk Optimasi Model Gated Recurrent Unit dalam Meramalkan Harga Penutupan Saham Pasca Isu Boikot
Pages: 1547−1558
Copyright (c) 2024 Bintu Labibah, Rangga Gelar Guntara, Syti Sarah Maesaroh

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).