Analisis Sentimen Tanggapan Publik di Twitter Terkait Program Kerja Makan Siang Gratis Prabowo–Gibran Menggunakan Algoritma Naïve Bayes Classifier dan Support Vector Machine
Abstract
Indonesia faces a serious challenge related to stunting, with rates reaching 21% in 2024, although this represents a decrease from 24% in 2021. In response, the government has launched various programs to address this issue, including nutrition education, health check-ups for pregnant women, and supplementary food provisions. Amid these efforts, the proposed free lunch program aims to improve nutritional quality for children and pregnant women. However, this program has sparked controversy over the required budget, estimated at IDR 450 trillion, which could impact the national budget balance and lead to inflation.
This study analyzes public sentiment toward the free lunch program using the Naïve Bayes Classifier (NBC) and Support Vector Machine (SVM) algorithms. An analysis of 1,028 tweets revealed that negative sentiment predominates at 44.84%, followed by positive sentiment (32.39%) and neutral sentiment (22.76%). SVM outperformed NBC with an accuracy of 75.39%, compared to NBC's 68.97%. The findings provide important insights into public perceptions of the program and highlight the need for further research to improve sentiment analysis methodologies.
Downloads
References
F. H. S. Rio Mahesa Putra, “Ciherang Stunting Corner: A step to reduce the prevalence of stunting,” J. Community Serv., vol. 2, pp. 335–348, 2023.
S. Sulistyowati et al., “Analisis Faktor Penyebab Stunting dan Pembagian Gizi Ringan sebagai Upaya Pemenuhan Gizi di Kelurahan Marang Bawah,” J. Kreat. Pengabdi. Kpd. Masy., vol. 6, no. 12, pp. 5564–5582, 2023, doi: 10.33024/jkpm.v6i12.12602.
M. E. D. Vanti, V. Octaviani, and M. Maryaningsih, “Analisis Framing Pemberitaan Program Makan Gratis Prabowo Subianto Di Media Online,” Prof. J. Komun. dan Adm. Publik, vol. 11, no. 1, pp. 427–436, 2024, doi: 10.37676/professional.v11i1.6396.
Y. Hidaytillah et al., “Pemberdayaan Masyarakat untuk Pencegahan Stunting dalam Rangka Membangun Masa Depan Masyarakat Unggul,” Welf. J. Pengabdi. Masy., vol. 1, no. 4, pp. 657–661, 2023, [Online]. Available: https://jurnalfebi.iainkediri.ac.id/index.php/Welfare
R. Saputra and F. N. Hasan, “Analisis Sentimen Terhadap Program Makan Siang & Susu Gratis Menggunakan Algoritma Naive Bayes,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 6, no. 3, pp. 411–419, 2024, doi: 10.47233/jteksis.v6i3.1378.
D. N. R. Tundo, “Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Terhadap Program Makan Siang Gratis,” J. Indones. Manaj. Inform. dan Komun., vol. 5, no. 3, 2024, [Online]. Available: https://journal.stmiki.ac.id/index.php/jimik/article/view/978/770
Z. Purwanti, “Pemodelan Text Mining untuk Analisis Sentimen Terhadap Program Makan Siang Gratis di Media Sosial X Menggunakan Algoritma Support Vector Machine ( SVM ),” vol. 5, no. 3, pp. 3065–3079, 2024.
A. Sitanggang, R. I. Umaidah, Yuyun, and Adam, “Analisis Sentimen Masyarakat Terhadap Program Makan Siang Gratis Pada Media Sosial X Menggunakan Algoritma Naïve Bayes,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, 2024, doi: 10.23960/jitet.v12i3.4902.
M. A. S. Putra, I. Permana, M. Mustakim, and M. Afdal, “Analisis Sentimen Masyarakat Mengenai Gerakan Childfree di Media Sosial X Menggunakan Algoritma NBC dan SVM,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 4, pp. 1189–1198, 2024, doi: 10.57152/malcom.v4i4.1356.
R. Afandi, M. Afdal, and R. Novita, “Analisis Sentimen Masyarakat Terhadap Pinjaman Online di Twitter Menggunakan Algoritma Naïve Bayes Classifier dan K-Nearest N eighbor,” vol. 6, no. 2, pp. 596–605, 2024, doi: 10.47065/bits.v6i2.5300.
R. N. Yudistira Arya Wibisono, M. Afdal, Mustakim, “Implementasi Algoritma Support Vector Machine Untuk Analisa Sentimen Data Ulasan Aplikasi Pinjaman Online di Google Play Store,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 4, pp. 1244–1252, 2024, doi: 10.57152/malcom.v4i4.1435.
Y. A. Putri, S. Defit, and G. W. Nurcahyo, “Analisis Sentimen Publik Terhadap Program Penurunan Angka Prevalensi Stunting Indonesia Menggunakan Data Twitter Dengan Metode Naïve Bayes,” vol. 4, pp. 1978–1989, 2024.
D. A. Warraihan, I. Permana, M. Mustakim, and R. Novita, “Analisis Sentimen Pengguna Transportasi Online Maxim Pada Instagram Menggunakan Naïve Bayes Classifier dan K-Nearest Neighbor,” J. Media Inform. Budidarma, vol. 7, no. 3, p. 1134, 2023, doi: 10.30865/mib.v7i3.6336.
I. P. Rahayu, A. Fauzi, and J. Indra, “Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Naive Bayes Dan Support Vector Machine,” J. Sist. Komput. dan Inform., vol. 4, no. 2, p. 296, 2022, doi: 10.30865/json.v4i2.5381.
G. Ginabila and A. Fauzi, “Analisis Sentimen Terhadap Pemutar Musik Online Spotify Dengan Algoritma Naive Bayes dan Support Vector Machine,” J. Ilm. Ilk. - Ilmu Komput. Inform., vol. 6, no. 2, pp. 111–122, 2023, doi: 10.47324/ilkominfo.v6i2.180.
E. S. Romaito, M. K. Anam, Rahmaddeni, Ulfah, and A. Noviciate, “Perbandingan Algoritma SVM Dan NBC Dalam Analisa Sentimen Pilkada Pada Twitter,” pp. 169–179, 2021, [Online]. Available: https://doi.org/10.22303/csrid.13.3.2021.169-179
D. Ananda and R. R. Suryono, “Analisis Sentimen Publik Terhadap Pengungsi Rohingya di Indonesia dengan Metode Support Vector Machine dan Naïve Bayes,” J. Media Inform. Budidarma, vol. 8, no. 2, p. 748, 2024, doi: 10.30865/mib.v8i2.7517.
A. Muhammadin and I. A. Sobari, “Analisis Sentimen Pada Ulasan Aplikasi Kredivo Dengan Algoritma Svm Dan Nbc,” Reputasi J. Rekayasa Perangkat Lunak, vol. 2, no. 2, pp. 85–91, 2021, doi: 10.31294/reputasi.v2i2.785.
G. K. Locarso, “Analisis Sentimen Review Aplikasi Pedulilindungi Pada Google Play Store Menggunakan Nbc,” JTIK (Jurnal Tek. Inform. Kaputama), vol. 6, no. 2, pp. 353–361, 2022, doi: 10.59697/jtik.v6i2.207.
S. Kurniawan, W. Gata, D. A. Puspitawati, M. Tabrani, and K. Novel, “Perbandingan Metode Klasifikasi Analisis Sentimen Tokoh Politik Pada Komentar Media Berita Online,” vol. 1, no. 10, pp. 2–8, 2021.
M. H. Saragih and A. S. Girsang, “Sentiment analysis of customer engagement on social media in transport online,” Proc. - 2017 Int. Conf. Sustain. Inf. Eng. Technol. SIET 2017, vol. 2018-Janua, pp. 24–29, 2017, doi: 10.1109/SIET.2017.8304103.
P. S. M. Suryani, L. Linawati, and K. O. Saputra, “Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia,” Maj. Ilm. Teknol. Elektro, vol. 18, no. 1, p. 145, 2019, doi: 10.24843/mite.2019.v18i01.p22.
B. agus Sholekha Inez, Faqih Ahmad, “Sentiment Analysis Of Publik Opinion Covid Vaccine Using Naive Bayes And Random Forest Methods,” J. Tek. Inform. Atmaluhur, vol. 6, no. 1, p. 4, 2022.
A. R. Isnain, A. I. Sakti, D. Alita, and N. S. Marga, “Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm,” J. Data Min. dan Sist. Inf., vol. 2, no. 1, p. 31, 2021, doi: 10.33365/jdmsi.v2i1.1021.
A. J. Rozaqi, A. Sunyoto, and M. rudyanto Arief, “Deteksi Penyakit Pada Daun Kentang Menggunakan Pengolahan Citra dengan Metode Convolutional Neural Network,” Creat. Inf. Technol. J., vol. 8, no. 1, p. 22, 2021, doi: 10.24076/citec.2021v8i1.263.
A. A. A. Suryati emi, Styawati Styawati, “Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine,” J. Teknol. Dan Sist. Inf., vol. 4, no. 1, pp. 96–106, 2023.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Tanggapan Publik di Twitter Terkait Program Kerja Makan Siang Gratis Prabowo–Gibran Menggunakan Algoritma Naïve Bayes Classifier dan Support Vector Machine
Pages: 1509−1516
Copyright (c) 2024 Annisa Ramadhani, Inggih Permana, M. Afdal, Mona Fronita

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).