Penerapan Natural Language Processing dan Machine Learning untuk Prediksi Stres Siswa SMA Berdasarkan Analisis Teks


  • Muhammad Rofiq sudrajat * Mail Universitas Teknologi Yogyakarta, Yogyakarta, Indonesia
  • Muhammad Zakariyah Universitas Teknologi Yogyakarta, Yogyakarta, Indonesia
  • (*) Corresponding Author
Keywords: Natural Language Processing; Machine Learning; Stress Prediction; High School Students; Text Analysis

Abstract

This research explores the application of Natural Language Processing (NLP) and Machine Learning in predicting stress among high school students. As stress in students often goes unnoticed, there is a need for effective methods to identify it early. To address this issue, this research develops a text-based stress prediction model using NLP for feature extraction and Machine Learning for classification. Core NLP techniques include data cleaning, stopword removal, tokenization, and lemmatization to process text data, while feature extraction is achieved through methods such as Bag Of Words (BOW), Term Frequency-Inverse Document Frequency (TF-IDF), and N-grams (Unigram, Bigram, Trigram). The Machine Learning models tested include Logistic Regression, Naive Bayes, Random Forest, and Support Vector Machine (SVM). Results from the experiments showed that the Naive Bayes model using Bigram features achieved the highest accuracy of 95.6%, with the other models achieving around 93%. Despite the strong performance of the models, errors such as False Positive and False Negative were still found, indicating room for improvement. This research shows that NLP combined with Machine Learning provides an effective approach to identifying student stress, with promising potential for mental health interventions in educational settings.

Downloads

Download data is not yet available.

References

A. Rahma and S. Cahyani, “Analisa Hubungan Antara Rasa Syukur Terhadap Kesehatan Mental Remaja di Banjarbaru,” Jurnal Religion: Jurnal Agama, Sosial, dan Budaya, vol. 1, no. 6, 2023, [Online]. Available: https://maryamsejahtera.com/index.php/Religion/index

N. Fulambarkar, B. Seo, A. Testerman, M. Rees, K. Bausback, and E. Bunge, “Review: Meta-analysis on mindfulness-based interventions for adolescents’ stress, depression, and anxiety in school settings: a cautionary tale,” May 01, 2023, John Wiley and Sons Inc. doi: 10.1111/camh.12572.

A. Z. B. Mentari, E. Liana, and T. Y. R. Pristya, “Teknik Manajemen Stres yang Paling Efektif pada Remaja: Literature Review,” JURNAL ILMIAH KESEHATAN MASYARAKAT : Media Komunikasi Komunitas Kesehatan Masyarakat, vol. 12, no. 4, pp. 191–196, Dec. 2020, doi: 10.52022/jikm.v12i4.69.

R. Syahputra and N. P. Siregar, “HUBUNGAN ANTARA TINGKAT STRES DENGAN KEJADIAN SINDROM DISPEPSIA FUNGSIONAL PADA MAHASISWA FAKULTAS KEDOKTERAN UNIVERSITAS ISLAM SUMATERA UTARA TAHUN 2020,” Jurnal Kedokteran Ibnu Nafis, vol. 10, no. 2, pp. 101–109, Dec. 2021, doi: 10.30743/jkin.v10i2.178.

M. A. Setiawan, R. W. Eriyanti, A. M. Huda, and A. Rofieq, “Problematika Tuntutan Eksternal bagi Kesejahteraan Psikologis Peserta Didik: Literature Review,” JURNAL BIMBINGAN DAN KONSELING AR-RAHMAN, vol. 10, no. 1, p. 144, Jun. 2024, doi: 10.31602/jbkr.v10i1.13719.

F. Yoduke, N. H. C. Daulima, and M. Mustikasari, “STRATEGI KOPING PADA REMAJA DALAM MENURUNKAN GEJALA KECEMASAN DAN DEPRESI : Literature Review,” Alauddin Scientific Journal of Nursing, vol. 4, no. 1, pp. 16–24, Apr. 2023, doi: 10.24252/asjn.v4i1.34251.

M. Malgaroli, T. D. Hull, J. M. Zech, and T. Althoff, “Natural language processing for mental health interventions: a systematic review and research framework,” Transl Psychiatry, vol. 13, no. 1, p. 309, Oct. 2023, doi: 10.1038/s41398-023-02592-2.

M. Amien, “Sejarah dan Perkembangan Teknik Natural Language Processing (NLP) Bahasa Indonesia: Tinjauan tentang sejarah, perkembangan teknologi, dan aplikasi NLP dalam bahasa Indonesia,” Mar. 2023, doi: 10.48550/arXiv.2304.02746.

E. Gutierrez, W. Karwowski, K. Fiok, M. R. Davahli, T. Liciaga, and T. Ahram, “Analysis of Human Behavior by Mining Textual Data: Current Research Topics and Analytical Techniques,” Symmetry (Basel), vol. 13, no. 7, p. 1276, Jul. 2021, doi: 10.3390/sym13071276.

C. Su, Z. Xu, J. Pathak, and F. Wang, “Deep learning in mental health outcome research: a scoping review,” Transl Psychiatry, vol. 10, no. 1, p. 116, Apr. 2020, doi: 10.1038/s41398-020-0780-3.

B. Lamichhane, “Evaluation of ChatGPT for NLP-based Mental Health Applications,” Mar. 2023, doi: https://doi.org/10.48550/arXiv.2303.15727.

A. Le Glaz et al., “Machine Learning and Natural Language Processing in Mental Health: Systematic Review,” J Med Internet Res, vol. 23, no. 5, p. e15708, May 2021, doi: 10.2196/15708.

S. Sinha, “EARLY STRESS DETECTION USING NATURAL LANGUAGE PROCESSING AND MACHINE LEARNING,” vol. 13, Jan. 2024, doi: 10.36106/ijsr.

K. Kumari and S. Das, “Stress Detection System using Natural Language Processing and Machine Learning Techniques,” 2022. [Online]. Available: https://iiitranchi.ac.in/

S. A. Rajagukguk, “TINJAUAN PUSTAKA SISTEMATIS: PREDIKSI PRESTASI BELAJAR PESERTA DIDIK DENGAN ALGORITMA PEMBELAJARAN MESIN,” Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi, vol. 1, no. 1, Aug. 2021, doi: 10.20885/snati.v1i1.4.

D. M. Low, L. Rumker, T. Talkar, J. Torous, G. Cecchi, and S. S. Ghosh, “Natural Language Processing Reveals Vulnerable Mental Health Support Groups and Heightened Health Anxiety on Reddit During COVID-19: Observational Study,” J Med Internet Res, vol. 22, no. 10, p. e22635, Oct. 2020, doi: 10.2196/22635.

M. Najamuddin, D. Miharja, and S. Adhkar, “Implementasi Chatbot Deteksi Depresi Dini Pada Mahasiswa Dengan Phq-9 (Patient Health Questionnaire) Menggunakan NLP (Natural Language Processing).,” Pelita Bangsa, vol. 1, no. 1, 2022, Accessed: Oct. 13, 2024. [Online]. Available: https://jurnal.pelitabangsa.ac.id/index.php/SAINTEK/article/view/1156

N. H. Kim, J. M. Kim, D. M. Park, S. R. Ji, and J. W. Kim, “Analysis of depression in social media texts through the Patient Health Questionnaire-9 and natural language processing,” Digit Health, vol. 8, 2022, doi: 10.1177/20552076221114204.

P. Syahputra and R. Kurniawan, “Analisis Sentimen Terhadap Kesehatan Mental Remaja Menggunakan Metode Naive Bayes,” Journal of Information System Research (JOSH), vol. 5, no. 4, pp. 1216–1224, 2024, doi: 10.47065/josh.v5i4.5644.

M. Bader, M. Abdelwanis, M. Maalouf, and H. F. Jelinek, “Detecting depression severity using weighted random forest and oxidative stress biomarkers,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-67251-y.

A. Van Fadhila et al., “Implementasi Metode Machine Learning Untuk Mendeteksi Tingkat Stres Manusia Berdasarkan Kualitas Tidur,” 2023. Accessed: Nov. 07, 2024. [Online]. Available: https://conference.upnvj.ac.id/index.php/senamika/article/view/2415

A. Heins, “School Anxiety: Signs and Strategies,” Anxiety and Depression Association of America (ADAA). Accessed: Oct. 24, 2024. [Online]. Available: https://adaa.org/learn-from-us/from-the-experts/blog-posts/consumer/school-anxiety-signs-and-strategies

M. M. A. Smith, “Burnout: Symptoms, Treatment, and Coping Strategy Tips,” HelpGuide.org. Accessed: Oct. 24, 2024. [Online]. Available: https://www.helpguide.org/mental-health/stress/burnout-prevention-and-recovery

A. Pietrangelo, “The Effects of Stress on Your Body,” Healthline. Accessed: Oct. 24, 2024. [Online]. Available: https://www.healthline.com/health/stress/effects-on-body

Mayo Clinic Staff, “Stress management,” Mayo Clinic. Accessed: Oct. 24, 2024. [Online]. Available: https://www.mayoclinic.org/healthy-lifestyle/stress-management/in-depth/stress/art-20046037

E. Scott, “How to Deal With Frustration,” Verywell mind. Accessed: Oct. 24, 2024. [Online]. Available: https://www.verywellmind.com/feel-less-frustrated-when-stressed-3145200

F. Kasmin, “Stress Detection Through Text in Social Media Using Machine Learning Techniques,” Journal of Advanced Research in Applied Sciences and Engineering Technology, pp. 162–176, Oct. 2024, doi: 10.37934/araset.63.2.162176.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Natural Language Processing dan Machine Learning untuk Prediksi Stres Siswa SMA Berdasarkan Analisis Teks

Dimensions Badge
Article History
Submitted: 2024-10-31
Published: 2024-12-03
Abstract View: 92 times
PDF Download: 109 times
How to Cite
sudrajat, M., & Zakariyah, M. (2024). Penerapan Natural Language Processing dan Machine Learning untuk Prediksi Stres Siswa SMA Berdasarkan Analisis Teks. Building of Informatics, Technology and Science (BITS), 6(3), 1527−1536. https://doi.org/10.47065/bits.v6i3.6180
Issue
Section
Articles