Penerapan Natural Language Processing dan Machine Learning untuk Prediksi Stres Siswa SMA Berdasarkan Analisis Teks
Abstract
This research explores the application of Natural Language Processing (NLP) and Machine Learning in predicting stress among high school students. As stress in students often goes unnoticed, there is a need for effective methods to identify it early. To address this issue, this research develops a text-based stress prediction model using NLP for feature extraction and Machine Learning for classification. Core NLP techniques include data cleaning, stopword removal, tokenization, and lemmatization to process text data, while feature extraction is achieved through methods such as Bag Of Words (BOW), Term Frequency-Inverse Document Frequency (TF-IDF), and N-grams (Unigram, Bigram, Trigram). The Machine Learning models tested include Logistic Regression, Naive Bayes, Random Forest, and Support Vector Machine (SVM). Results from the experiments showed that the Naive Bayes model using Bigram features achieved the highest accuracy of 95.6%, with the other models achieving around 93%. Despite the strong performance of the models, errors such as False Positive and False Negative were still found, indicating room for improvement. This research shows that NLP combined with Machine Learning provides an effective approach to identifying student stress, with promising potential for mental health interventions in educational settings.
Downloads
References
A. Rahma and S. Cahyani, “Analisa Hubungan Antara Rasa Syukur Terhadap Kesehatan Mental Remaja di Banjarbaru,” Jurnal Religion: Jurnal Agama, Sosial, dan Budaya, vol. 1, no. 6, 2023, [Online]. Available: https://maryamsejahtera.com/index.php/Religion/index
N. Fulambarkar, B. Seo, A. Testerman, M. Rees, K. Bausback, and E. Bunge, “Review: Meta-analysis on mindfulness-based interventions for adolescents’ stress, depression, and anxiety in school settings: a cautionary tale,” May 01, 2023, John Wiley and Sons Inc. doi: 10.1111/camh.12572.
A. Z. B. Mentari, E. Liana, and T. Y. R. Pristya, “Teknik Manajemen Stres yang Paling Efektif pada Remaja: Literature Review,” JURNAL ILMIAH KESEHATAN MASYARAKAT : Media Komunikasi Komunitas Kesehatan Masyarakat, vol. 12, no. 4, pp. 191–196, Dec. 2020, doi: 10.52022/jikm.v12i4.69.
R. Syahputra and N. P. Siregar, “HUBUNGAN ANTARA TINGKAT STRES DENGAN KEJADIAN SINDROM DISPEPSIA FUNGSIONAL PADA MAHASISWA FAKULTAS KEDOKTERAN UNIVERSITAS ISLAM SUMATERA UTARA TAHUN 2020,” Jurnal Kedokteran Ibnu Nafis, vol. 10, no. 2, pp. 101–109, Dec. 2021, doi: 10.30743/jkin.v10i2.178.
M. A. Setiawan, R. W. Eriyanti, A. M. Huda, and A. Rofieq, “Problematika Tuntutan Eksternal bagi Kesejahteraan Psikologis Peserta Didik: Literature Review,” JURNAL BIMBINGAN DAN KONSELING AR-RAHMAN, vol. 10, no. 1, p. 144, Jun. 2024, doi: 10.31602/jbkr.v10i1.13719.
F. Yoduke, N. H. C. Daulima, and M. Mustikasari, “STRATEGI KOPING PADA REMAJA DALAM MENURUNKAN GEJALA KECEMASAN DAN DEPRESI : Literature Review,” Alauddin Scientific Journal of Nursing, vol. 4, no. 1, pp. 16–24, Apr. 2023, doi: 10.24252/asjn.v4i1.34251.
M. Malgaroli, T. D. Hull, J. M. Zech, and T. Althoff, “Natural language processing for mental health interventions: a systematic review and research framework,” Transl Psychiatry, vol. 13, no. 1, p. 309, Oct. 2023, doi: 10.1038/s41398-023-02592-2.
M. Amien, “Sejarah dan Perkembangan Teknik Natural Language Processing (NLP) Bahasa Indonesia: Tinjauan tentang sejarah, perkembangan teknologi, dan aplikasi NLP dalam bahasa Indonesia,” Mar. 2023, doi: 10.48550/arXiv.2304.02746.
E. Gutierrez, W. Karwowski, K. Fiok, M. R. Davahli, T. Liciaga, and T. Ahram, “Analysis of Human Behavior by Mining Textual Data: Current Research Topics and Analytical Techniques,” Symmetry (Basel), vol. 13, no. 7, p. 1276, Jul. 2021, doi: 10.3390/sym13071276.
C. Su, Z. Xu, J. Pathak, and F. Wang, “Deep learning in mental health outcome research: a scoping review,” Transl Psychiatry, vol. 10, no. 1, p. 116, Apr. 2020, doi: 10.1038/s41398-020-0780-3.
B. Lamichhane, “Evaluation of ChatGPT for NLP-based Mental Health Applications,” Mar. 2023, doi: https://doi.org/10.48550/arXiv.2303.15727.
A. Le Glaz et al., “Machine Learning and Natural Language Processing in Mental Health: Systematic Review,” J Med Internet Res, vol. 23, no. 5, p. e15708, May 2021, doi: 10.2196/15708.
S. Sinha, “EARLY STRESS DETECTION USING NATURAL LANGUAGE PROCESSING AND MACHINE LEARNING,” vol. 13, Jan. 2024, doi: 10.36106/ijsr.
K. Kumari and S. Das, “Stress Detection System using Natural Language Processing and Machine Learning Techniques,” 2022. [Online]. Available: https://iiitranchi.ac.in/
S. A. Rajagukguk, “TINJAUAN PUSTAKA SISTEMATIS: PREDIKSI PRESTASI BELAJAR PESERTA DIDIK DENGAN ALGORITMA PEMBELAJARAN MESIN,” Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi, vol. 1, no. 1, Aug. 2021, doi: 10.20885/snati.v1i1.4.
D. M. Low, L. Rumker, T. Talkar, J. Torous, G. Cecchi, and S. S. Ghosh, “Natural Language Processing Reveals Vulnerable Mental Health Support Groups and Heightened Health Anxiety on Reddit During COVID-19: Observational Study,” J Med Internet Res, vol. 22, no. 10, p. e22635, Oct. 2020, doi: 10.2196/22635.
M. Najamuddin, D. Miharja, and S. Adhkar, “Implementasi Chatbot Deteksi Depresi Dini Pada Mahasiswa Dengan Phq-9 (Patient Health Questionnaire) Menggunakan NLP (Natural Language Processing).,” Pelita Bangsa, vol. 1, no. 1, 2022, Accessed: Oct. 13, 2024. [Online]. Available: https://jurnal.pelitabangsa.ac.id/index.php/SAINTEK/article/view/1156
N. H. Kim, J. M. Kim, D. M. Park, S. R. Ji, and J. W. Kim, “Analysis of depression in social media texts through the Patient Health Questionnaire-9 and natural language processing,” Digit Health, vol. 8, 2022, doi: 10.1177/20552076221114204.
P. Syahputra and R. Kurniawan, “Analisis Sentimen Terhadap Kesehatan Mental Remaja Menggunakan Metode Naive Bayes,” Journal of Information System Research (JOSH), vol. 5, no. 4, pp. 1216–1224, 2024, doi: 10.47065/josh.v5i4.5644.
M. Bader, M. Abdelwanis, M. Maalouf, and H. F. Jelinek, “Detecting depression severity using weighted random forest and oxidative stress biomarkers,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-67251-y.
A. Van Fadhila et al., “Implementasi Metode Machine Learning Untuk Mendeteksi Tingkat Stres Manusia Berdasarkan Kualitas Tidur,” 2023. Accessed: Nov. 07, 2024. [Online]. Available: https://conference.upnvj.ac.id/index.php/senamika/article/view/2415
A. Heins, “School Anxiety: Signs and Strategies,” Anxiety and Depression Association of America (ADAA). Accessed: Oct. 24, 2024. [Online]. Available: https://adaa.org/learn-from-us/from-the-experts/blog-posts/consumer/school-anxiety-signs-and-strategies
M. M. A. Smith, “Burnout: Symptoms, Treatment, and Coping Strategy Tips,” HelpGuide.org. Accessed: Oct. 24, 2024. [Online]. Available: https://www.helpguide.org/mental-health/stress/burnout-prevention-and-recovery
A. Pietrangelo, “The Effects of Stress on Your Body,” Healthline. Accessed: Oct. 24, 2024. [Online]. Available: https://www.healthline.com/health/stress/effects-on-body
Mayo Clinic Staff, “Stress management,” Mayo Clinic. Accessed: Oct. 24, 2024. [Online]. Available: https://www.mayoclinic.org/healthy-lifestyle/stress-management/in-depth/stress/art-20046037
E. Scott, “How to Deal With Frustration,” Verywell mind. Accessed: Oct. 24, 2024. [Online]. Available: https://www.verywellmind.com/feel-less-frustrated-when-stressed-3145200
F. Kasmin, “Stress Detection Through Text in Social Media Using Machine Learning Techniques,” Journal of Advanced Research in Applied Sciences and Engineering Technology, pp. 162–176, Oct. 2024, doi: 10.37934/araset.63.2.162176.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Natural Language Processing dan Machine Learning untuk Prediksi Stres Siswa SMA Berdasarkan Analisis Teks
Pages: 1527−1536
Copyright (c) 2024 Muhammad Rofiq sudrajat, Muhammad Zakariyah

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).