Implementation of Item-Based Collaborative Filtering Algorithm for Blangkon Product Recommendation on Web-Based E-commerce System


  • Cahyo Tri Atmojo * Mail Universitas Dian Nuswantoro, Semarang, Indonesia
  • Ajib Susanto Universitas Dian Nuswantoro, Semarang, Indonesia
  • (*) Corresponding Author
Keywords: e-commerce; collaborative filtering; recommendation system; blangkon; rating

Abstract

In the development of technology at this time, especially in the trade sector, there is no escape from the development of information technology which has had a significant impact. The most obvious form in the development of information technology in the trade sector is e-commerce, which allows transactions between sellers and buyers to be easier. Not only that, the problem now is that users must be spoiled with features that help to recommend user desires. This requires a recommendation system to help select user desires based on products with high ratings. Therefore, it must continue to develop a system that has features to support the sales system. To achieve the system needs to require a method that supports such as using the collaborative filtering method. This method focuses the analysis on similarities between items, because it is more stable and not always sensitive to changing data with a large number of users. The collaborative filtering method is used in the recommendation system to predict inter-user preferences for blangkon products based on the similarity of other user patterns, so that product recommendations appear that they have never seen or bought before. This technique uses an item-based model in it. The results of the performance test to determine the level of prediction accuracy of the method in this study using the mean absolute error. With MAE for three times trying to get a value of 0.5, 0.3 and 0.2.

Downloads

Download data is not yet available.

References

Nugrah Leksono Putri Handayani, “E-Commerce Sebagai Penunjang Ekonomi Digital di Jawa Tengah,” J. Ilm. Manajemen, Bisnis dan Kewirausahaan, vol. 2, no. 1, pp. 9–14, 2022, doi: 10.55606/jurimbik.v2i1.103.

R. Terranova and A. Triayudi, “The Implementation of E-Commerce for Frozen Food Products in Providing Recommendations Using Item-Based Collaborative Filtering Method,” vol. 2, no. 2, pp. 131–137, 2024.

A. Fadli and P. Wolo, “Optimalisasi Web Desa pada Penyajian Informasi Publik Kepada Masyarakat Desa,” RENATA J. Pengabdi. Masy. Kita Semua, vol. 1, no. 1, pp. 11–14, 2023, doi: 10.61124/1.renata.3.

Susilowati and A. Riyadi, “Badan Penelitian dan Pengembangan Daerah Kabupaten Malang,” Balitbang Kab. Malang, vol. 4, pp. 42–49, 2023, [Online]. Available: https://balitbang.malangkab.go.id/pd/#

K. A. Satria and B. Baizal, “Improved Collaborative Filtering Recommender System Based on Missing Values Imputation on E-Commerce,” Build. Informatics, Technol. Sci., vol. 3, no. 4, pp. 453–459, 2022, doi: 10.47065/bits.v3i4.1214.

F. Herny, A. D. Laksono, J. S. Wibowo, and M. S. Utomo, “IMPLEMENTASI METODE COLLABORATIVE FILTERING UNTUK SISTEM REKOMENDASI PENJUALAN PADA TOKO MEBEL,” vol. IX, no. I, pp. 43–50, 2021.

K. A. Sholihah, I. I. K. Ratih, A. F. Rahmawati, L. A. Mutmainah, and H. Purwanta, “Development of the Blangkon Industry in Potrojayan Village 1995-2019,” vol. 8, no. 2, pp. 12671–12680, 2024, doi: 10.36526/js.v3i2.4099.

S. Sutjiningtyas and A. A. Dharmawan, “Rancang Bangun Sistem Rekomendasi Produk Sepatu pada Toko Online Menggunakan Metode User-Base Collaborative Filtering,” vol. 3, no. 2, pp. 143–148, 2022.

S. Devi Nurhayati and W. Widayani, “Sistem Rekomendasi Wisata Kuliner di Yogyakarta dengan Metode Item-Based Collaborative Filtering Yogyakarta Culinary Recommendation System with Item-Based Collaborative Filtering Method,” JACIS J. Autom. Comput. Inf. Syst., vol. 1, no. 2, pp. 55–63, 2021, [Online]. Available: https://manganenakyog.my.id/,

Z. K. A. Baizal, D. H. Widyantoro, and N. U. Maulidevi, “Computational model for generating interactions in conversational recommender system based on product functional requirements,” Data Knowl. Eng., vol. 128, no. March, p. 101813, 2020, doi: 10.1016/j.datak.2020.101813.

D. Santun Naga and E. Dewayani, “Jurnal Ilmu Komputer dan Sistem Informasi SISTEM INFORMASI PENJUALAN PAKAIAN BERBASIS WEB PADA TARGET FACTORY OUTLET,” pp. 7–14, 2020.

S. Mahmuda, A. Sucipto, and S. Setiawansyah, “Pengembangan Sistem Informasi Pengolahan Data Tunjangan Karyawan Bulog (TKB) (Studi Kasus: Perum Bulog Divisi Regional Lampung),” J. Ilm. Sist. Inf. Akunt., vol. 1, no. 1, pp. 14–23, 2021, doi: 10.33365/jimasia.v1i1.914.

D. Amelia Chandra, F. Santosa, and S. Wahyudi, “Penerapan Metode Item Based Collaborative Filtering Berbasis Web Pada Recommender System Laptop,” Eng. Technol. Int. J. Juli, vol. 3, no. 2, p. 8, 2021, doi: 10.55642/eatij.v3i02.

J. Guo, J. Deng, X. Ran, Y. Wang, and H. Jin, “An efficient and accurate recommendation strategy using degree classification criteria for item-based collaborative filtering,” Expert Syst. Appl., vol. 164, p. 113756, 2021, doi: 10.1016/j.eswa.2020.113756.

A. Arifin, “Penerapan Sistem Algoritma Collaborative Filtering Untuk Rekomendasi Pemilihan Indekos Berdasarkan Rating,” vol. 2, no. 6, pp. 1–11, 2022.

A. Budiman, S. Sunariyo, and J. Jupriyadi, “Sistem Informasi Monitoring dan Pemeliharaan Penggunaan SCADA (Supervisory Control and Data Acquisition),” J. Tekno Kompak, vol. 15, no. 2, p. 168, 2021, doi: 10.33365/jtk.v15i2.1159.

A. H. Ardiansyah, A. Widiyanto, and S. Nugroho, “Implementation of the item-based collaborative filtering method on a web-based culinary tourism recommendation system (case study: Magelang City),” Borobudur Informatics Rev., vol. 2, no. 2, pp. 47–60, 2022, doi: 10.31603/binr.6731.

A. Refkrisnatta and D. Handayani, “Cafe Selection Recommendation System in Semarang City Uses Collaborative Filtering Method with Item Based Filtering Algorithm,” vol. 6, no. 2, pp. 95–108, 2022.

R. Faurina, E. Sitanggang, P. S. Informatika, F. Teknik, U. Bengkulu, and K. Limun, “Implementasi Metode Content-Based Filtering dan Collaborative Filtering pada Sistem Rekomendasi Wisata di Bali,” vol. 22, no. 4, pp. 870–881, 2023.

F. T. Abdul Hussien, A. M. S. Rahma, and H. B. Abdul Wahab, “Recommendation Systems for E-commerce Systems An Overview,” J. Phys. Conf. Ser., vol. 1897, no. 1, 2021, doi: 10.1088/1742-6596/1897/1/012024.

S. A. Zulvian, K. Prihandani, and A. A. Ridha, “Perbandingan Metode MSD dan Cosine Similarity Pada Sistem Rekomendasi Item-Based Collaborative Filtering,” vol. 4, pp. 340–347, 2021.

K. M. L, A. Triayudi, and N. D. Nathasia, “Implementasi Sistem Aplikasi Pemesanan Aksesori Baliem Menggunakan Algoritma Collaborative Filtering,” vol. 3, no. 6, pp. 1254–1262, 2023, doi: 10.30865/klik.v3i6.965.

M. Yusuf and A. Cherid, “Implementasi Algoritma Cosine Similarity Dan Metode TF-IDF Berbasis PHP Untuk Menghasilkan Rekomendasi Seminar,” J. Ilm. Fak. Ilmu Komput., vol. 9, no. 1, pp. 8–16, 2020.

Y. Liu, Y. Mu, K. Chen, Y. Li, and J. Guo, “Daily Activity Feature Selection in Smart Homes Based on Pearson Correlation Coefficient,” Neural Process. Lett., vol. 51, no. 2, pp. 1771–1787, 2020, doi: 10.1007/s11063-019-10185-8.

R. R. Mahendra, F. T. Anggraeny, and H. E. Wahanani, “Implementasi Item-Based Collaborative Filtering Untuk Rekomendasi Film,” no. 3, 2024.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementation of Item-Based Collaborative Filtering Algorithm for Blangkon Product Recommendation on Web-Based E-commerce System

Dimensions Badge
Article History
Submitted: 2024-10-23
Published: 2024-12-03
Abstract View: 83 times
PDF Download: 39 times
How to Cite
Atmojo, C., & Susanto, A. (2024). Implementation of Item-Based Collaborative Filtering Algorithm for Blangkon Product Recommendation on Web-Based E-commerce System. Building of Informatics, Technology and Science (BITS), 6(3), 1440-1447. https://doi.org/10.47065/bits.v6i3.6120
Issue
Section
Articles