Klasifikasi Penyakit Pada Daun Kopi Robusta Menggunakan Arsitektur AlexNet dan Xception dengan Metode Convolutional Neural Network
Abstract
Diseases on the leaves of robusta coffee plants can have a significant impact on the growth and yield of robusta coffee plants. The leaves of the robusta coffee plant are susceptible to various types of diseases caused by fungi, bacteria or insects with symptoms such as brown, yellow or black patches and discoloration on the surface of the leaves of the robusta coffee plant. Early detection of diseases in robusta coffee leaf plants is very important to obtain effective control to maintain plant health. In this study, a disease classification model on the leaves of robusta coffee plants was made using the Convolutional Neural Network (CNN) architecture. The architecture used in this study is AlexNet and Xception. In this study, a dataset of images of robusta coffee leaves obtained through direct observation of robusta coffee plantations in Temanggung Regency was used. The number of datasets used was 1400 data which was divided into 4 classes, namely healthy, root down, leaf rust and red spider mites. The CNN model was tested by setting parameters consisting of batch size, drop out, learning rate, optimizer and the number of epochs that varied 35, 50 and 100. The results of this study show that the AlexNet architecture model with 50 epoch tests obtains the best accuracy of 98.57% and the Xception architecture obtains an accuracy of 100% in each epoch test. Overall, the use of AlexNet and Xception architectures is very effective in classifying diseases in robusta coffee leaves, but the Xception architecture is superior in the ability to classify complex datasets and higher accuracy.
Downloads
References
A. A. Azzahrah, K. Budiraharjo, and M. Handayani, “Analisis Faktor Produksi Kopi Robusta Analysis of Robusta Coffee Production Factors,” Jurnal Sosial Ekonomi Pertanian, vol. 19, no. 3, 2023, doi: https://journal.unhas.ac.id/index.php/jsep/article/view/29904.
T. Endang Togatorop, I. Mariami, S. Informasi, and S. Triguna Dharma, “Sistem Pakar Mendiagnosa Penyakit Pada Tanaman Kopi Robusta Menggunakan Metode Dempster Shafer,” Jurnal Sains Manajemen Informatika dan Komputer, vol. 21, no. 1, pp. 32–39, 2022, doi: https://doi.org/10.53513/jis.v21i1.4867.
A. Raup, W. Ridwan, Y. Khoeriyah, Q. Yuliati Zaqiah, and U. Islam Negeri Sunan Gunung Djati Bandung, “Deep Learning dan Penerapannya dalam Pembelajaran,” JIIP - Jurnal Ilmiah Ilmu Pendidikan, vol. 5, no. 9, 2022, doi: 10.54371/jiip.v5i9.805.
I. Awaludin, M. Fadhil, and M. Andhika Zaini Zulfikor, “Analisis Kinerja ResNet-50 dalam Klasifikasi Penyakit pada Daun Kopi Robusta,” JURNAL INFORMATIKA, vol. 9, no. 2, 2022, doi: 10.31294/inf.v9i1.13049.
Y. Annisa, P. Vandalis, S. Soim, and L. Lindawati, “Pengembangan Algoritma Convolutional Neural Networks (CNN) dengan Penambahan Layer Konvolusi untuk Klasifikasi Objek dalam Gambar Sampah,” Building of Informatics, Technology and Science (BITS), vol. 6, no. 2, 2024, doi: 10.47065/bits.v9i9.999.
A. Rinaldi, N. Mukti, and P. T. Prasetyaningrum, “Klasifikasi Daun Teh Klon Seri GMB Menggunakan Convolutional Neural Network dengan Arsitektur VGG16 dan Xception,” Journal of Information Technology Ampera, vol. 5, no. 1, pp. 2774–2121, 2024, doi: 10.51519/journalita.v5i1.540.
J. I. Massie and A. M. Widodo, “DEEP LEARNING UNTUK KLASIFIKASI PENYAKIT RETINOPATI DIABETIK MENGGUNAKAN ARSITEKTUR ALEXNET DAN GENERATIVE ADVERSARIAL NETWORK,” Jurnal SIMETRIS, vol. 14, no. 2, 2023, doi: https://doi.org/10.24176/simet.v14i2.9498.
D. Irfansyah et al., “Arsitektur Convolutional Neural Network (CNN) Alexnet Untuk Klasifikasi Hama Pada Citra Daun Tanaman Kopi,” JPIT (Jurnal Informatika: Jurnal Pengembangan IT), vol. 6, no. 2, 2021, doi: https://doi.org/10.30591/jpit.v6i2.2802.
A. I. Saputra, I. Weni, U. Khaira, A. Info, and K. Kunci, “Implementasi Metode Convolutional Neural Network Untuk Deteksi Penyakit Pada Tanaman Kopi Arabika Melalui Citra Daun Berbasis Android,” Jurnal Pendidikan Teknologi Informasi, vol. 4, no. 1, pp. 41–51, 2024, doi: 10.51454/decode.v4i1.231.
A. Savira, W. Sabrina, and A. M. Fawwaz, “Klasifikasi Penyakit pada Tanaman Kopi Robusta Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” eProceedings of Engineering, vol. 9, no. 3, 2022, doi: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/17997.
A. Fatchurrachman and D. Udjulawa, “Identifikasi Penyakit Pada Tanaman Kopi Berdasarkan Citra Daun Menggunakan Metode Convolution Neural Network,” Jurnal Algoritme, vol. 3, no. 2, 2023, doi: 10.35957/algoritme.xxxx.
R. Windiawan, A. Suharso, and S. Artikel, “Identifikasi Penyakit pada Daun Kopi Menggunakan Metode Deep Learning VGG16,” Jurnal Keilmuan dan Aplikasi Teknik Informatika, vol. 13, no. 2, 2021, doi: 10.35891/explorit.
I. Firdaus, R. Hidayati, R. S. Hamidah, R. Rianti, R. Cahyuni, and K. Khotimah, “Model-Model Pengumpulan Data dalam Penelitian Tindakan Kelas,” Jurnal Kreativitas Mahasiswa, vol. 1, no. 2, 2023, doi: https://riset-iaid.net/index.php/jpm/article/view/1443.
S. Dewi, F. Ramadhani, and S. Djasmayena, “Klasifikasi Jenis Jerawat Berdasarkan Gambar Menggunakan Algoritma CNN (Convolutional Neural Network),” Hello World Jurnal Ilmu Komputer, vol. 3, no. 2, pp. 68–73, Jul. 2024, doi: 10.56211/helloworld.v3i2.518.
Dian Anisa Agustina, “KLASIFIKASI CITRA JENIS KULIT WAJAH DENGAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK (CNN) RESNET-50,” Jurnal Riset Sistem Informasi, vol. 1, no. 3, pp. 01–07, Jul. 2024, doi: 10.69714/13sbby24.
A. Bagas Prakosa and dan Radius Tanone, “IMPLEMENTASI MODEL DEEP LEARNING CONVOLUTIONAL NEURAL NETWORK (CNN) PADA CITRA PENYAKIT DAUN JAGUNG UNTUK KLASIFIKASI PENYAKIT TANAMAN,” Jurnal Pendidikan Teknologi Informasi (JUKANTI), vol. 6, no. 1, 2023, doi: https://doi.org/10.37792/jukanti.v6i1.919.
N. Ibrahim et al., “Klasifikasi Tingkat Kematangan Pucuk Daun Teh menggunakan Metode Convolutional Neural Network,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 10, no. 1, p. 162, Jan. 2022, doi: 10.26760/elkomika.v10i1.162.
M. Zahir and R. Adi Saputra, “DETEKSI PENYAKIT RETINOPATI DIABETES MENGGUNAKAN CITRA MATA DENGAN IMPLEMENTASI DEEP LEARNING CNN,” Jurnal Teknoinfo, vol. 18, no. 1, pp. 121–132, 2024, doi: https://doi.org/10.33365/jti.v18i1.3348.
Moh. A. Hasan, Y. Riyanto, and D. Riana, “Grape leaf image disease classification using CNN-VGG16 model,” Jurnal Teknologi dan Sistem Komputer, vol. 9, no. 4, pp. 218–223, Oct. 2021, doi: 10.14710/jtsiskom.2021.14013.
A. Rachmatullah Pratama and A. F. Cobantoro, “KLASIFIKASI CITRA PNEUMONIA MENGGUNAKAN ARSITEKTUR CONVOLUTIONAL NEURAL NETWORK (CNN) PNEUMONIA IMAGE CLASSIFICATI ON USING CONVOLUTINAL NEURAL NETWORK (CNN) ARCHITECTURE,” Jurnal Ilmiah NERO, vol. 8, no. 2, p. 2023, 2023, doi: https://doi.org/10.21107/nero.v8i2.18992.
Fahmi Anugrah Danendra, Fetty Tri Anggraeny, and Hendra Maulana, “Klasifikasi Citra Penyakit Daun Cabai Rawit Dengan Menggunakan CNN Arsitektur AlexNet dan SqueezeNet,” Syntax : Jurnal Informatika, vol. 12, no. 1, pp. 50–61, 2023, doi: https://doi.org/10.35706/syji.v12i01.
A. Akram, K. Fayakun, and H. Ramza, “Klasifikasi Hama Serangga pada Pertanian Menggunakan Metode Convolutional Neural Network,” Building of Informatics, Technology and Science (BITS), vol. 5, no. 2, Sep. 2023, doi: 10.47065/bits.v5i2.4063.
M. Farid Naufal, J. Siswantoro, and M. Ghifari Kusuma Wicaksono, “Klasifikasi Tulisan Tangan Pada Resep Obat Menggunakan Convolutional Neural Network,” Jurnal Techno.Com , vol. 22, no. 2, pp. 508–526, 2023, doi: https://doi.org/10.33633/tc.v22i2.8075.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Penyakit Pada Daun Kopi Robusta Menggunakan Arsitektur AlexNet dan Xception dengan Metode Convolutional Neural Network
Pages: 1393-1402
Copyright (c) 2024 Nadia Ashari, Donny Avianto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).