Perbandingan Algoritma Support Vector Machine dan Naïve Bayes dalam Menganalisis Sentimen Pinjaman Online di Twitter
Abstract
Unemployment is one of the poverty factors in society, the large economic needs make it difficult for people to meet their daily needs, thus triggering high demand for loans in society. With the advancement of technology, online loans are now available to help people meet their economic needs. However, over time, many irresponsible parties have taken advantage of this. Marked by the emergence of many illegal online loans, which have triggered negative impacts such as the spread of customer personal data, terror on social media, to debt collection using debt collectors. So that it raises a lot of sentiment in society regarding online loans. For this reason, it is necessary to conduct a sentiment analysis with the aim of public response to online loans, which can be positive, negative or neutral responses. There are two datasets used, namely legal online loans and illegal online loans. This study uses two algorithms, namely SVM and Naive Bayes, the two algorithms will be compared to find out which algorithm is better at analyzing online loan sentiment. In addition, in its use, the two algorithms will also use the SMOTE technique to stabilize the data. The results obtained on legal loan data classification using SVM are quite better than Naive Bayes, with an accuracy rate of 69% with sentiment that often appears is positive sentiment. For illegal loan data, classification using the Naive Bayes algorithm is better than SVM with an accuracy of 75% and sentiment that often appears is neutral sentiment. Based on these results, it can be concluded that in analyzing sentiment using legal loan data, the best algorithm is the SVM algorithm, and for illegal loan data, the best algorithm is the Naive Bayes algorithm.
Downloads
References
R. Imanto, M. Panorama, and R. Sumantri, “Pengaruh Pengangguran dan Kemiskinan Terhadap Pertumbuhan Ekonomi di Provinsi Sumatera Selatan,” J. Ekon. Islam, vol. 1, no. 1, p. 59, 2020, doi: 10.32662/golder.v1i1.115.
R. V. Ramadhanie, “Pengaruh Literasi Keuangan, Bandwagon Effect, Persepsi Kemudahan Penggunaan, dan Manfaat Yang Dirasakan Terhadap Intensi Penggunaan Layanan Pinjaman Online (Peer to Peer Lending) Sebagai Pihak Peminjam (Borrower).” Universitas Islam Indonesia, 2023.
V. A. R. A. Sidiq and H. Setiawan, “Analisis Framing Pemberitaan Kasus Pinjaman Online Warga Negara China pada Media Online CNNIndonesia.com dan Nasional Tempo.com,” Edukatif J. Ilmu Pendidik., vol. 4, no. 1, pp. 851–861, 2022, doi: 10.31004/edukatif.v4i1.1935.
E. A. B. Bara, K. A. Nasution, R. Z. Ginting, and Kartini, “Penelitian tentang Twitter,” J. Edukasi Nonform., vol. 3, no. 2, pp. 167–172, 2022.
R. W. Pratiwi, S. F. H, D. Dairoh, D. I. Af’idah, Q. R. A, and A. G. F, “Analisis Sentimen Pada Review Skincare Female Daily Menggunakan Metode Support Vector Machine (SVM),” J. Informatics, Inf. Syst. Softw. Eng. Appl., vol. 4, no. 1, pp. 40–46, 2021, doi: 10.20895/inista.v4i1.387.
R. N. Ikhsani and F. F. Abdulloh, “Optimasi SVM dan Decision Tree Menggunakan SMOTE Untuk Mengklasifikasi Sentimen Masyarakat Mengenai Pinjaman Online,” J. Media Inform. Budidarma, vol. 7, no. 4, pp. 1667–1677, 2023, doi: 10.30865/mib.v7i4.6809.
M. ; Imam Ghozali, W. Harry Sugiharto, and A. Fajar Iskandar, “Analisis Sentimen Pinjaman Online Di Media Sosial Twitter Menggunakan Metode Naive Bayes,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 33, no. 1, pp. 1–12, 2022, doi: 10.30865/klik.v3i6.936.
E. S. R. Br.Situmorang, M. K. Anam, R. Rahmaddeni, and A. N. Ulfah, “Perbandingan Algoritma Svm Dan Nbc Dalam Analisa Sentimen Pilkada Pada Twitter,” CSRID (Computer Sci. Res. Its Dev. Journal), vol. 13, no. 3, p. 169, 2021, doi: 10.22303/csrid.13.3.2021.169-179.
A. C. Khotimah and E. Utami, “Perbandingan Algoritma Naïve Bayes Classifier, K-Nearest Neighbor Dan Support Vector Machine Dalam Klasifikasi Karakter Individu Pada Akun Twitter,” J. Tek. Inform., vol. 3, no. 3, pp. 673–680, 2022, doi: https://doi.org/10.20884/1.jutif.2022.3.3.254.
P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 1, p. 147, 2021, doi: 10.25126/jtiik.0813944.
F. Fathonah and A. Herliana, “Penerapan Text Mining Analisis Sentimen Mengenai Vaksin Covid - 19 Menggunakan Metode Naïve Bayes,” J. Sains dan Inform., vol. 7, no. 2, pp. 155–164, 2021, doi: 10.34128/jsi.v7i2.331.
M. Samir, H. Darwis, F. Umar, and P. Korespondensi, “Fourier Descriptor Pada Klasifikasi Daun Herbal Menggunakan Support Vector Machine Dan Naive Bayes Fourier Descriptor on Classification of Herbal Leaves Using Support Vector Machine and Naive Bayes,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 6, pp. 1205–1212, 2023, doi: 10.25126/jtiik.2023107309.
A. A. A. Arifin, W. Handoko, and Z. Efendi, “Implementasi Metode Naive Bayes Untuk Klasifikasi Penerima Program Keluarga Harapan,” J-Com (Journal Comput., vol. 2, no. 1, pp. 21–26, 2022, doi: 10.33330/j-com.v2i1.1577.
R. Wati, S. Ernawati, and H. Rachmi, “Pembobotan TF-IDF Menggunakan Naïve Bayes pada Sentimen Masyarakat Mengenai Isu Kenaikan BIPIH,” J. Manaj. Inform., vol. 13, no. 1, pp. 84–93, 2023, doi: 10.34010/jamika.v13i1.9424.
G. H. Kusuma, I. Permana, F. N. Salisah, M. Afdal, M. Jazman, and A. Marsal, “Pendekatan Machine Learning: Analisis Sentimen Masyarakat Terhadap Kendaraan Listrik Pada Sosial Media X,” JUSIFO (Jurnal Sist. Informasi), vol. 9, no. 2, pp. 65–76, 2023, doi: 10.19109/jusifo.v9i2.21354.
C. M. Putri, M. Afdal, R. Novita, and M. Mustakim, “Perbandingan Evaluasi Kernel Support Vector Machine dalam Analisis Sentimen Chatbot AI pada Ulasan Google Play Store,” J. Teknol. Sist. Inf. dan Apl., vol. 7, no. 3, pp. 1236–1245, 2024, doi: 10.32493/jtsi.v7i3.41354.
W. Nugraha and A. Sasongko, “Hyperparameter Tuning pada Algoritma Klasifikasi dengan Grid Search Hyperparameter Tuning on Classification Algorithm with Grid Search,” Sist. J. Sist. Inf., vol. 11, no. 2, pp. 391–401, 2022, doi: http://sistemasi.ftik.unisi.ac.id.
S. Maula Chamzah, M. Lestandy, N. Kasan, and A. Nugraha, “Penerapan Synthetic Minority Oversampling Technique (SMOTE) untuk Imbalance Class pada Data Text Menggunakan kNN,” Syntax J. Inform., vol. 11, no. 02, pp. 56–67, 2022, doi: 10.35706/syji.v11i02.6940.
S. Ramadhani, D. Azzahra, and T. Z, “Comparison of K-Means and K-Medoids Algorithms in Text Mining based on Davies Bouldin Index Testing for Classification of Student’s Thesis,” Digit. Zo. J. Teknol. Inf. dan Komun., vol. 13, no. 1, pp. 24–33, 2022, doi: 10.31849/digitalzone.v13i1.9292.
A. Mustofa and R. Novita, “Klasifikasi Sentimen Masyarakat Terhadap Pemberlakuan Pembatasan Kegiatan Masyarakat Menggunakan Text Mining Pada Twitter,” Build. Informatics, Technol. Sci., vol. 4, no. 1, pp. 200–208, 2022, doi: 10.47065/bits.v4i1.1628.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Perbandingan Algoritma Support Vector Machine dan Naïve Bayes dalam Menganalisis Sentimen Pinjaman Online di Twitter
Pages: 1413-1426
Copyright (c) 2024 Yulia Ikhsani, Inggih Permana, Pebi Nur Salisah, Mustakim Mustakim, Nesdi Evrilyan Rozanda

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).