Perbandingan Performa Algoritma NBC, C4.5, dan KNN dalam Analisis Sentimen Masyarakat terhadap Krisis Petani Muda pada Media Sosial Facebook


  • Nurkholis Nurkholis Universitas Islam Negeri Sultan Syarif Kasim, Riau, Indonesia
  • Inggih Permana Universitas Islam Negeri Sultan Syarif Kasim, Riau, Indonesia
  • Febi Nur Salisah Universitas Islam Negeri Sultan Syarif Kasim, Riau, Indonesia
  • Mustakim Mustakim Universitas Islam Negeri Sultan Syarif Kasim, Riau, Indonesia
  • M Afdal * Mail Universitas Islam Negeri Sultan Syarif Kasim, Riau, Indonesia
  • (*) Corresponding Author
Keywords: NBC; C4.5; KNN; Young Farmer Crisis; Sentiment Analysis

Abstract

In Indonesia, young farmers face various challenges and crises that hinder the growth and sustainability of the agricultural sector. They face obstacles such as lack of access to capital, limited technology, climate change, and low selling prices for their crops. In addition, they also often face problems in obtaining accurate and relevant information in an effort to facilitate better decision-making in agricultural businesses, so that the interest of young people today to become farmers is decreasing. The study aims to Compare the Performance of NBC, C4.5, and KNN Algorithms in the Analysis of Public Sentiment towards the Young Farmer Crisis on Facebook Social Media. The application of the K-Fold Cross Validation method is (K = 10). Sentiment analysis is carried out with 3 labels (positive, negative, and neutral). The data used in making the classification model (data from preprocessing the stemming column) using (Google Colab) amounted to 4,878 data with Positive sentiment of 43.13% (2,104), Neutral 39.59% (1,931), Negative 17.28% (843) from the initial data without nested comments, which is 4,981 and the total number of Facebook data is 2,900 likes, 6,700 comments, and 3.3 million viewers. The accuracy of the NBC algorithm is 57.32%, the C4.5 algorithm is 98.42%, and the KNN algorithm (K = 19) is 97.33%. It can be concluded that the results of the comparison of the performance of the three algorithms using (Rapidminer10.3), the C4.5 algorithm gets a higher accuracy of 98.42% and is superior because it produces a decision tree.

Downloads

Download data is not yet available.

References

R. Saleh, I. Oktafiani, and M. Y. Sitohang, “Sulitnya Regenerasi Petani pada Kelompok Generasi Muda,” J. Stud. Pemuda, vol. 10, no. 1, p. 1, 2021, doi: 10.22146/studipemudaugm.62533.

S. Maihani, M. Jamilah, S. Ahmad, and Z. Yamani, “Jurnal Sains Pertanian Krisis tenaga kerja pertanian ‘ petani muda ’ masa depan Future ‘ young farmers ’ agricultural labor crisis,” vol. 4, no. 2, pp. 85–91, 2021.

E. Y. Arvianti, M. Masyhuri, L. R. Waluyati, and D. H. Darwanto, “Gambaran Krisis Petani Muda Indonesia,” Agriekonomika, vol. 8, no. 2, pp. 168–180, 2019, doi: 10.21107/agriekonomika.v8i2.5429.

Kementerian Pertanian, “Rencana Strategis Kementerian Pertanian Tahun 2020-2024,” Salinan Keputusan Menteri Pertan. Republik Indones., pp. 1–161, 2021.

M. R. Firdaus, F. M. Rizki, F. M. Gaus, and I. K. Susanto, “Analisis Sentimen Dan Topic Modelling Dalam Aplikasi Ruangguru,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 4, no. 1, p. 66, 2020, doi: 10.30645/j-sakti.v4i1.188.

F. Fersellia, E. Utami, and A. Yaqin, “Sentiment Analysis of Shopee Food Application User Satisfaction Using the C4.5 Decision Tree Method,” Sinkron, vol. 8, no. 3, pp. 1554–1563, 2023, doi: 10.33395/sinkron.v8i3.12531.

R. S. Amardita, A. Adiwijaya, and M. D. Purbolaksono, “Analisis Sentimen terhadap Ulasan Paris Van Java Resort Lifestyle Place di Kota Bandung Menggunakan Algoritma KNN,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 1, p. 62, 2022, doi: 10.30865/jurikom.v9i1.3793.

D. Oktavia, Y. R. Ramadahan, and M. Minarto, “Analisis Sentimen Terhadap Penerapan Sistem E-Tilang Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM),” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 1, pp. 407–417, 2023, doi: 10.30865/klik.v4i1.1040.

A. Dina, I. Permana, F. Muttakin, and ..., “Perbandingan Algoritma NBC, KNN, dan C4. 5 Untuk Klasifikasi Penerima Bantuan Program Keluarga Harapan,” J. Media …, vol. 7, no. 3, pp. 1079–1087, 2023, doi: 10.30865/mib.v7i3.6316.

S. Mulyani and R. Novita, “Implementation of the Naive Bayes Classifier Algorithm for Classification of Community Sentiment About Depression on Youtube,” J. Tek. Inform., vol. 3, no. 5, pp. 1355–1361, 2022, doi: 10.20884/1.jutif.2022.3.5.374.

D. A. Warraihan, I. Permana, Mustakim, R. Novita, M. Afdal, and A. Marsal, “Analisis Sentimen Pengguna Transportasi Online Maxim Pada Instagram Menggunakan Naïve Bayes Classifier dan K-Nearest Neighbour,” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1134–1143, 2023, doi: 10.30865/mib.v7i3.6336.

M. Chair, Y. N. Nasution, and N. A. Rizki, “Aplikasi Klasifikasi Algoritma C4.5 (Studi Kasus Masa Studi Mahasiswa Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Mulawarman Angkatan 2008),” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 12, no. 1, p. 50, 2017, doi: 10.30872/jim.v12i1.223.

D. Astri Nawangnugraeni et al., “’ Jurnal Teknologi Informasi dan Komunikasi C4.5 Algorithm Implementation for Public Sentyment Analysis Covid-19 Vaccine,” pp. 151–160, 2022, [Online]. Available: https://doi.org/10.31849/digitalzone.v13i2.11658

F. N. Hasan, N. Hikmah, and D. Y. Utami, “Perbandingan Algoritma C4.5, KNN, dan Naive Bayes untuk Penentuan Model Klasifikasi Penanggung jawab BSI Entrepreneur Center,” J. Pilar Nusa Mandiri, vol. 14, no. 2, p. 169, 2018, doi: 10.33480/pilar.v14i2.908.

B. G. Gerardo, S. Saifullah, and E. Irawan, “Teknik Data Mining Dalam Penilaian Pengajaran Guru Berdasarkan Indeks Kepuasan Siswa,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 508–514, 2019, doi: 10.30865/komik.v3i1.1634.

D. Pramana, M. Afdal, M. Mustakim, and I. Permana, “Analisis Sentimen Terhadap Pemindahan Ibu Kota Negara Menggunakan Algoritma Naive Bayes Classifier dan K-Nearest Neightbors,” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1306–1314, 2023, doi: 10.30865/mib.v7i3.6523.

Alfandi Safira and F. N. Hasan, “Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier,” Zo. J. Sist. Inf., vol. 5, no. 1, pp. 59–70, 2023, doi: 10.31849/zn.v5i1.12856.

Fitri Wulandari, Elin Haerani, Muhammad Fikry, and Elvia Budianita, “Analisis sentimen larangan penggunaan obat sirup menggunakan algoritma naive bayes classifier,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 4, no. 1, pp. 88–96, 2023, doi: 10.37859/coscitech.v4i1.4781.

N. F. Hasan, A. Aisyah, R. Rahman, and H. Wonda, “SeHasan, Nur Fitrianingsih, Aisyah Aisyah, Rahman Rahman, and Herlin Wonda. 2022. ‘Sentiment Analysis of Public Opinion Regarding Papuan Local Languages Condition Using Data Science Approach.’ Digital Zone: Jurnal Teknologi Informasi dan Komunikasi 13(2 S,” Digit. Zo. J. Teknol. Inf. dan Komun., vol. 13, no. 2 SE-Articles, pp. 125–139, 2022, [Online]. Available: http://journal.unilak.ac.id/index.php/dz/article/view/11545

A. ELHAN, M. K. D. HARDHIENATA, H. YENI, S. WIJAYA HARTONO, and J. ADISANTOSO, “Analisis Sentimen Pengguna Twitter terhadap Vaksinasi COVID-19 di Indonesia menggunakan Algoritme Random Forest dan BERT Sentiment Analysis of Twitter Users on COVID-19 Vaccines in Indonesia using Random Forest and BERT Algorithms,” J. Ilmu Komput. Agri-informatika, vol. 9, no. 2, pp. 199–211, 2022, [Online]. Available: https://jurnal.ipb.ac.id/index.php/jika/article/view/44459

I. Yunanto and S. Yulianto, “Twitter Sentiment Analysis Pedulilindungi Application Using Naïve Bayes and Support Vector Machine,” J. Tek. Inform., vol. 3, no. 4, pp. 807–814, 2022, doi: 10.20884/1.jutif.2022.3.4.292.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Perbandingan Performa Algoritma NBC, C4.5, dan KNN dalam Analisis Sentimen Masyarakat terhadap Krisis Petani Muda pada Media Sosial Facebook

Dimensions Badge
Article History
Submitted: 2024-10-16
Published: 2024-12-03
Abstract View: 91 times
PDF Download: 68 times
How to Cite
Nurkholis, N., Permana, I., Salisah, F., Mustakim, M., & Afdal, M. (2024). Perbandingan Performa Algoritma NBC, C4.5, dan KNN dalam Analisis Sentimen Masyarakat terhadap Krisis Petani Muda pada Media Sosial Facebook. Building of Informatics, Technology and Science (BITS), 6(3), 1383-1392. https://doi.org/10.47065/bits.v6i3.6082
Issue
Section
Articles