Perbandingan Performa Algoritma NBC, C4.5, dan KNN dalam Analisis Sentimen Masyarakat terhadap Krisis Petani Muda pada Media Sosial Facebook
Abstract
In Indonesia, young farmers face various challenges and crises that hinder the growth and sustainability of the agricultural sector. They face obstacles such as lack of access to capital, limited technology, climate change, and low selling prices for their crops. In addition, they also often face problems in obtaining accurate and relevant information in an effort to facilitate better decision-making in agricultural businesses, so that the interest of young people today to become farmers is decreasing. The study aims to Compare the Performance of NBC, C4.5, and KNN Algorithms in the Analysis of Public Sentiment towards the Young Farmer Crisis on Facebook Social Media. The application of the K-Fold Cross Validation method is (K = 10). Sentiment analysis is carried out with 3 labels (positive, negative, and neutral). The data used in making the classification model (data from preprocessing the stemming column) using (Google Colab) amounted to 4,878 data with Positive sentiment of 43.13% (2,104), Neutral 39.59% (1,931), Negative 17.28% (843) from the initial data without nested comments, which is 4,981 and the total number of Facebook data is 2,900 likes, 6,700 comments, and 3.3 million viewers. The accuracy of the NBC algorithm is 57.32%, the C4.5 algorithm is 98.42%, and the KNN algorithm (K = 19) is 97.33%. It can be concluded that the results of the comparison of the performance of the three algorithms using (Rapidminer10.3), the C4.5 algorithm gets a higher accuracy of 98.42% and is superior because it produces a decision tree.
Downloads
References
R. Saleh, I. Oktafiani, and M. Y. Sitohang, “Sulitnya Regenerasi Petani pada Kelompok Generasi Muda,” J. Stud. Pemuda, vol. 10, no. 1, p. 1, 2021, doi: 10.22146/studipemudaugm.62533.
S. Maihani, M. Jamilah, S. Ahmad, and Z. Yamani, “Jurnal Sains Pertanian Krisis tenaga kerja pertanian ‘ petani muda ’ masa depan Future ‘ young farmers ’ agricultural labor crisis,” vol. 4, no. 2, pp. 85–91, 2021.
E. Y. Arvianti, M. Masyhuri, L. R. Waluyati, and D. H. Darwanto, “Gambaran Krisis Petani Muda Indonesia,” Agriekonomika, vol. 8, no. 2, pp. 168–180, 2019, doi: 10.21107/agriekonomika.v8i2.5429.
Kementerian Pertanian, “Rencana Strategis Kementerian Pertanian Tahun 2020-2024,” Salinan Keputusan Menteri Pertan. Republik Indones., pp. 1–161, 2021.
M. R. Firdaus, F. M. Rizki, F. M. Gaus, and I. K. Susanto, “Analisis Sentimen Dan Topic Modelling Dalam Aplikasi Ruangguru,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 4, no. 1, p. 66, 2020, doi: 10.30645/j-sakti.v4i1.188.
F. Fersellia, E. Utami, and A. Yaqin, “Sentiment Analysis of Shopee Food Application User Satisfaction Using the C4.5 Decision Tree Method,” Sinkron, vol. 8, no. 3, pp. 1554–1563, 2023, doi: 10.33395/sinkron.v8i3.12531.
R. S. Amardita, A. Adiwijaya, and M. D. Purbolaksono, “Analisis Sentimen terhadap Ulasan Paris Van Java Resort Lifestyle Place di Kota Bandung Menggunakan Algoritma KNN,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 1, p. 62, 2022, doi: 10.30865/jurikom.v9i1.3793.
D. Oktavia, Y. R. Ramadahan, and M. Minarto, “Analisis Sentimen Terhadap Penerapan Sistem E-Tilang Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM),” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 1, pp. 407–417, 2023, doi: 10.30865/klik.v4i1.1040.
A. Dina, I. Permana, F. Muttakin, and ..., “Perbandingan Algoritma NBC, KNN, dan C4. 5 Untuk Klasifikasi Penerima Bantuan Program Keluarga Harapan,” J. Media …, vol. 7, no. 3, pp. 1079–1087, 2023, doi: 10.30865/mib.v7i3.6316.
S. Mulyani and R. Novita, “Implementation of the Naive Bayes Classifier Algorithm for Classification of Community Sentiment About Depression on Youtube,” J. Tek. Inform., vol. 3, no. 5, pp. 1355–1361, 2022, doi: 10.20884/1.jutif.2022.3.5.374.
D. A. Warraihan, I. Permana, Mustakim, R. Novita, M. Afdal, and A. Marsal, “Analisis Sentimen Pengguna Transportasi Online Maxim Pada Instagram Menggunakan Naïve Bayes Classifier dan K-Nearest Neighbour,” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1134–1143, 2023, doi: 10.30865/mib.v7i3.6336.
M. Chair, Y. N. Nasution, and N. A. Rizki, “Aplikasi Klasifikasi Algoritma C4.5 (Studi Kasus Masa Studi Mahasiswa Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Mulawarman Angkatan 2008),” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 12, no. 1, p. 50, 2017, doi: 10.30872/jim.v12i1.223.
D. Astri Nawangnugraeni et al., “’ Jurnal Teknologi Informasi dan Komunikasi C4.5 Algorithm Implementation for Public Sentyment Analysis Covid-19 Vaccine,” pp. 151–160, 2022, [Online]. Available: https://doi.org/10.31849/digitalzone.v13i2.11658
F. N. Hasan, N. Hikmah, and D. Y. Utami, “Perbandingan Algoritma C4.5, KNN, dan Naive Bayes untuk Penentuan Model Klasifikasi Penanggung jawab BSI Entrepreneur Center,” J. Pilar Nusa Mandiri, vol. 14, no. 2, p. 169, 2018, doi: 10.33480/pilar.v14i2.908.
B. G. Gerardo, S. Saifullah, and E. Irawan, “Teknik Data Mining Dalam Penilaian Pengajaran Guru Berdasarkan Indeks Kepuasan Siswa,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 508–514, 2019, doi: 10.30865/komik.v3i1.1634.
D. Pramana, M. Afdal, M. Mustakim, and I. Permana, “Analisis Sentimen Terhadap Pemindahan Ibu Kota Negara Menggunakan Algoritma Naive Bayes Classifier dan K-Nearest Neightbors,” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1306–1314, 2023, doi: 10.30865/mib.v7i3.6523.
Alfandi Safira and F. N. Hasan, “Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier,” Zo. J. Sist. Inf., vol. 5, no. 1, pp. 59–70, 2023, doi: 10.31849/zn.v5i1.12856.
Fitri Wulandari, Elin Haerani, Muhammad Fikry, and Elvia Budianita, “Analisis sentimen larangan penggunaan obat sirup menggunakan algoritma naive bayes classifier,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 4, no. 1, pp. 88–96, 2023, doi: 10.37859/coscitech.v4i1.4781.
N. F. Hasan, A. Aisyah, R. Rahman, and H. Wonda, “SeHasan, Nur Fitrianingsih, Aisyah Aisyah, Rahman Rahman, and Herlin Wonda. 2022. ‘Sentiment Analysis of Public Opinion Regarding Papuan Local Languages Condition Using Data Science Approach.’ Digital Zone: Jurnal Teknologi Informasi dan Komunikasi 13(2 S,” Digit. Zo. J. Teknol. Inf. dan Komun., vol. 13, no. 2 SE-Articles, pp. 125–139, 2022, [Online]. Available: http://journal.unilak.ac.id/index.php/dz/article/view/11545
A. ELHAN, M. K. D. HARDHIENATA, H. YENI, S. WIJAYA HARTONO, and J. ADISANTOSO, “Analisis Sentimen Pengguna Twitter terhadap Vaksinasi COVID-19 di Indonesia menggunakan Algoritme Random Forest dan BERT Sentiment Analysis of Twitter Users on COVID-19 Vaccines in Indonesia using Random Forest and BERT Algorithms,” J. Ilmu Komput. Agri-informatika, vol. 9, no. 2, pp. 199–211, 2022, [Online]. Available: https://jurnal.ipb.ac.id/index.php/jika/article/view/44459
I. Yunanto and S. Yulianto, “Twitter Sentiment Analysis Pedulilindungi Application Using Naïve Bayes and Support Vector Machine,” J. Tek. Inform., vol. 3, no. 4, pp. 807–814, 2022, doi: 10.20884/1.jutif.2022.3.4.292.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Perbandingan Performa Algoritma NBC, C4.5, dan KNN dalam Analisis Sentimen Masyarakat terhadap Krisis Petani Muda pada Media Sosial Facebook
Pages: 1383-1392
Copyright (c) 2024 Nurkholis Nurkholis, Inggih Permana, Febi Nur Salisah, Mustakim Mustakim, M. Afdal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).