Model Prediksi Kualitas Air Untuk Budidaya Ikan Lele Dengan Algoritma Extreme Gradient Boosting
Abstract
The growth of the aquaculture sector in Indonesia, particularly in catfish farming, has experienced significant increases. However, a major challenge faced is the need for accurate predictions of fish development to optimize production and minimize the risk of losses. This study aims to develop a growth prediction system for catfish based on machine learning using the XGBoost algorithm, which considers critical environmental factors such as water quality (temperature, pH, dissolved oxygen, ammonia, and nitrate). With this system, catfish farmers can monitor water quality in real-time, allowing them to take timely and optimal preventive actions regarding feed provision, thereby improving harvest yields and reducing operational costs. The XGBoost model demonstrates good performance with a Mean Absolute Error (MAE) of 0.073 for fish weight and 14.66 for fish length, a Mean Squared Error (MSE) of 0.123 for fish weight and 1.278 for fish length, and an R² value of 0.998 for both variables, indicating high accuracy in predicting fish growth. It is expected that this research will not only enhance productivity and efficiency in catfish farming but also support digital transformation in Indonesia's fisheries sector, providing a competitive advantage for farmers in facing increasingly complex industry challenges.
Downloads
References
D. Mariyono, A. N. A. Hidayatullah, And A. N. A. Kamila, Inovasi Akuakultur Menyatukan Teknologi Dan Budaya Dalam Bisnis Korporasi Di Indonesia. Cipta Media Nusantara, 2024. [Online]. Available: Https://Books.Google.Co.Id/Books?Id=Dtcdeqaaqbaj
F. Ali, D. Hidayat, N. Hoerniasih, And Others, “Pelatihan Program Kecakapan Hidup Budidaya Ikan Lele Sebagai Upaya Pemberdayaan Masyarakat Di Pkbm Linggih Sinau Banyusari,” Comm-Edu (Community Education Journal), Vol. 7, No. 1, Pp. 98–113, 2024.
Rudiyant, Ensiklopedia Ikan Lele. Lembar Langit Indonesia, 2023. [Online]. Available: Https://Books.Google.Co.Id/Books?Id=09xmeaaaqbaj
M. Tasya Aulia, N. Anisah, E. Sulistyo, P. M. Negeri, And B. Belitung, “Prosiding Seminar Nasional Inovasi Teknologi Terapan 2022 Sistem Kontrol Dan Monitoring Kualitas Air Pada Budidaya Ikan Lele Dengan Media Kolam Berbasis Iot,” 2022.
A. Deni, Manajemen Strategi Di Era Industri 4.0. Cendikia Mulia Mandiri, 2023.
N. Fahmi And S. Natalia, “Sistem Pemantauan Kualitas Air Budidaya Ikan Lele Menggunakan Teknologi Iot,” Jurnal Media Informatika Budidarma, Vol. 4, No. 4, Pp. 1243–1248, 2020.
E. Retnoningsih And R. Pramudita, “Mengenal Machine Learning Dengan Teknik Supervised Dan Unsupervised Learning Menggunakan Python,” Bina Insani Ict Journal, Vol. 7, No. 2, Pp. 156–165, 2020.
S. Jesika, S. Ramadhani, And Y. P. Putri, “Implementasi Model Machine Learning Dalam Mengklasifikasi Kualitas Air,” Jurnal Ilmiah Dan Karya Mahasiswa, Vol. 1, No. 6, Pp. 382–396, 2023.
N. N. Amiroh Et Al., Prosiding Seminar Nasional Inovasi Teknologi Informasi & Komunikasi: “Optimalisasi Teknologi Kecerdasan Artifisial Untuk Mendukung Transformasi Digital Dan Masa Depan Otomasi.” Sanata Dharma University Press, 2024. [Online]. Available: Https://Books.Google.Co.Id/Books?Id=N30yeqaaqbaj
E. Sakina And A. H. Mirza, “Prediksi Hasil Produksi Ikan Lele Menggunakan Machine Learning (Studi Kasus Dinas Perikanan Kabupaten Muara Enim),” Jurnal Instek (Informatika Sains Dan Teknologi), Vol. 9, No. 1, Pp. 55–64, 2024.
J. M. A. S. Dachi And P. Sitompul, “Analisis Perbandingan Algoritma Xgboost Dan Algoritma Random Forest Ensemble Learning Pada Klasifikasi Keputusan Kredit,” Jurnal Riset Rumpun Matematika Dan Ilmu Pengetahuan Alam, Vol. 2, No. 2, Pp. 87–103, 2023.
C. Thomas And A. Engelbrecht, Data Mining: Concepts And Applications. In Artificial Intelligence, Volume 8. Intechopen, 2022. [Online]. Available: Https://Books.Google.Co.Id/Books?Id=Btjueaaaqbaj
A. Maghfiroh, Y. Findawati, And U. Indahyanti, “Klasifikasi Penipuan Pada Rekening Bank Menggunakan Pendekatan Ensemble Learning,” Building Of Informatics, Technology And Science (Bits), Vol. 4, No. 4, Mar. 2023, Doi: 10.47065/Bits.V4i4.3212.
T. Revathi, K. Muneeswaran, And M. Blessa Binolin Pepsi, Big Data Processing With Hadoop. In Advances In Data Mining And Database Management (2327-1981). Igi Global, 2018. [Online]. Available: Https://Books.Google.Co.Id/Books?Id=Qsj0dwaaqbaj
P. W. Rahayu Et Al., Buku Ajar Data Mining. Pt. Sonpedia Publishing Indonesia, 2024. [Online]. Available: Https://Books.Google.Co.Id/Books?Id=Vcrueaaaqbaj
D. A. Prasetya, A. Muhaimin, And Others, “Analisis Klaster Partitioning Around Medoids Dengan Gower Distance Untuk Rekomendasi Indekos (Studi Kasus: Indekos Di Sekitar Kampus Upnvjt),” G-Tech: Jurnal Teknologi Terapan, Vol. 8, No. 3, Pp. 2060–2069, 2024.
A. H. Pratama, Belajar Mudah Dan Singkat Machine Learning: Panduan Praktis Dengan Studi Kasus, Kode Program, Dan Dataset. Penerbit Andi, 2024. [Online]. Available: Https://Books.Google.Co.Id/Books?Id=Pfmoeqaaqbaj
H. Wijaya, D. P. Hostiadi, And E. Triandini, “Meningkatkan Prediksi Penjualan Retail Xyz Dengan Teknik Optimasi Random Search Pada Model Xgboost,” In Seminar Hasil Penelitian Informatika Dan Komputer (Spinter)| Institut Teknologi Dan Bisnis Stikom Bali, 2024, Pp. 829–833.
I. Amansyah, J. Indra, E. Nurlaelasari, And A. R. Juwita, “Prediksi Penjualan Kendaraan Menggunakan Regresi Linear: Studi Kasus Pada Industri Otomotif Di Indonesia,” Innovative: Journal Of Social Science Research, Vol. 4, No. 4, Pp. 1199–1216, 2024.
T. D. R. Octavia, N. Rosmawarni, A. Zaidiah, J. R. S. F. Raya, And P. Labu, “Implementasi Algoritma Multiple Linear Regression Untuk Memprediksi Temperatur Udara Berdasarkan Kadar Zat Polutan Di Kota Tangerang Selatan,” Jrsf Raya, 2024.
H. Hermansyah, A. Abdullah, And P. Y. Utami, “Penerapan Metode Regresi Linier Berganda Untuk Memprediksi Panen Kelapa Sawit,” Progresif: Jurnal Ilmiah Komputer, Vol. 20, No. 1, Pp. 540–554, 2024.
Iskandar, A. Faisal, B. Utomo, And M. H. Ridho, “Formula_Yang_Bikin_Datamu_Bunyi,” 2022.
P. S. Rizky, R. H. Hirzi, And U. Hidayaturrohman, “Perbandingan Metode Lightgbm Dan Xgboost Dalam Menangani Data Dengan Kelas Tidak Seimbang,” J Statistika: Jurnal Ilmiah Teori Dan Aplikasi Statistika, Vol. 15, No. 2, Pp. 228–236, 2022.
A. Samih, A. Ghadi, And A. Fennan, “Enhanced Sentiment Analysis Based On Improved Word Embeddings And Xgboost.,” International Journal Of Electrical & Computer Engineering (2088-8708), Vol. 13, No. 2, 2023.
M. Arifin, “Model Educational Data Mining Berbasis Gradient Boosted Trees Untuk Prediksi Performa Akademik Mahasiswa,” 2024.
F. Septia Nugraha And H. Ferdinandus Pardede, “Autoencoder Untuk Sistem Prediksi Berat Lahir Bayi,” 2022, Doi: 10.25126/Jtiik.202293868.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Model Prediksi Kualitas Air Untuk Budidaya Ikan Lele Dengan Algoritma Extreme Gradient Boosting
Pages: 1373-1382
Copyright (c) 2024 Mokhammad Irvan Maulana, Fajar Nugraha, Arif Setiawan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).