Deteksi Objek Boneka Korban pada Kontes Robot SAR Indonesia Menggunakan ESP32-cam
Abstract
The 2024 Indonesian SAR Robot Contest demands the ability of robots to differentiate between dummy dolls and victim dolls in emergency situations. This SAR robot has the main goal of rescuing victims and bringing them to a safe zone, so the author explores the implementation of object detection on SAR robots using ESP32-cam to detect victim dolls. The authors used the Edge Impulse platform, a TinyML platform, to train an object detection model using the Faster Objects, More Objects (FOMO) architecture. This model is optimized to run efficiently on resource-limited devices such as the ESP32-cam microcontroller. Training data was obtained by taking pictures of dummy dolls and victim dolls in various angles, lighting conditions and backgrounds using a camera from the ESP32-cam. The confusion matrix results from the model training process showed that the F1 score reached 100% and when testing the model, the object detection model was able to detect the victim doll with adequate accuracy, even though there were challenges such as variations in position and environmental conditions so the researchers used additional algorithms to increase detection accuracy. . The use of FOMO allows faster object detection and is able to detect more objects in one frame. This implementation shows great potential in the development of more efficient and autonomous SAR robots for rescue missions. These findings contribute to improving robotic technology, one of which is in SAR operations and provide a basis for further research in the application of object detection.
Downloads
References
S. Suhada and H. Helmi, “Aplikasi Mikrokontroler Atmega8535 Pada Robot Cerdas Pengangkut Tempat Sampah (Box) Menggunakan Sensor Warna Tcs3200,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 3, no. 4, pp. 293–298, Oct. 2019, doi: 10.30865/mib.v3i4.1251.
I. A. Wicaksono, “Implementasi Kontrol PID Pada Gerakan Robot Line Follower Berkaki Menggunakan Sensor Kamera,” Jurnal Elektronika dan Otomasi Industri, vol. 7, no. 3, 2020, Accessed: Jun. 25, 2024. [Online]. Available: https://jurnal.polinema.ac.id/index.php/elkolind/article/view/4346
Y. Pratama et al., “Implementasi Kontrol PID untuk Percepatan Rotasi pada Robot Hexapod,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 4, pp. 1869–1876, Oct. 2023, doi: 10.30865/MIB.V7I4.6583.
B. Pengembangan Talenta, I. Pusat, P. Nasional, K. Pendidikan, and D. Teknologi, “Pedoman Kontes Robot Indonesia (Kri) Pendidikan Tinggi Tahun 2024.” 2024
R. Y. Adhitya et al., “Sistem Pengendalian Robot KRSRI Menggunakan Logika Fuzzy Sugeno Orde Nol,” Jurnal Elektronika dan Otomasi Industri, vol. 11, no. 1, pp. 159–168, May 2024, doi: 10.33795/ELKOLIND.V11I1.4057.
K. Khairunnas, E. M. Yuniarno, and A. Zaini, “Pembuatan Modul Deteksi Objek Manusia Menggunakan Metode YOLO untuk Mobile Robot,” Jurnal Teknik ITS, vol. 10, no. 1, pp. A50–A55, Aug. 2021, doi: 10.12962/j23373539.v10i1.61622.
J. Sitompul, M. I. Bustami, and D. Kisbianty, “Implementasi Algoritma Haar Cascade Classifier Dalam Mendeteksi Robot Sepak Bola Beroda,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 4, pp. 2032–2039, Oct. 2022, doi: 10.30865/mib.v6i4.3929.
Y. Abadade, A. Temouden, H. Bamoumen, N. Benamar, Y. Chtouki, and A. S. Hafid, “A Comprehensive Survey on TinyML,” IEEE Access, vol. 11, pp. 96892–96922, 2023, doi: 10.1109/ACCESS.2023.3294111.
Steven Reynandi Owen, “Pengembangan Aplikasi Untuk Mendeteksi Penggunaan Masker Berbasis Tinyml Di Raspberry Pi,” 2022, Accessed: Jul. 16, 2024. [Online]. Available: http://repository.ithb.ac.id
Pete Warden and Daniel Situnayake, TinyML: Machine Learning With TensorFlow Lite on Arduino and Ultra-Low-Power Microcontroller. O’Reilly Media, 2019. Accessed: Sep. 24, 2024. [Online]. Available: https://www.google.co.id/books/edition/TinyML/tn3EDwAAQBAJ?hl=id&gbpv=0
B. Fandidarma, R. Dwi Laksono, K. Warih, and B. Pamungkas, “Rancang Bangun Mobil Remote Control Pemantau Area berbasis IoT menggunakan ESP 32 Cam,” vol. 2, no. 1, pp. 2745–598, 2021.
S. Hymel et al., “Edge Impulse: An MLOps Platform for Tiny Machine Learning,” Nov. 2022, Accessed: Jul. 16, 2024. [Online]. Available: https://arxiv.org/abs/2212.03332v3
C. K. Kwon, “Development of Embedded Machine Learning Finger Number Recognition Application using Edge Impulse Platform,” Proceedings - 2023 Congress in Computer Science, Computer Engineering, and Applied Computing, CSCE 2023, pp. 2697–2699, 2023, doi: 10.1109/CSCE60160.2023.00433.
A. Dharani, S. A. Kumar, and P. N. Patil, “Object Detection at Edge Using TinyML Models,” SN Comput Sci, vol. 5, no. 1, pp. 1–6, Jan. 2024, doi: 10.1007/S42979-023-02304-Z/METRICS.
I. N. Mihigo, M. Zennaro, A. Uwitonze, J. Rwigema, and M. Rovai, “On-Device IoT-Based Predictive Maintenance Analytics Model: Comparing TinyLSTM and TinyModel from Edge Impulse,” Sensors 2022, Vol. 22, Page 5174, vol. 22, no. 14, p. 5174, Jul. 2022, doi: 10.3390/S22145174.
A. Mellit, N. Blasuttigh, and A. M. Pavan, “TinyML for fault diagnosis of Photovoltaic Modules using Edge Impulse Platform,” 11th International Conference on Smart Grid, icSmartGrid 2023, 2023, doi: 10.1109/ICSMARTGRID58556.2023.10171088.
“FOMO: Object detection for constrained devices | Edge Impulse Documentation.” Accessed: Jul. 16, 2024. [Online]. Available: https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/object-detection/fomo-object-detection-for-constrained-devices
F. Marpaung, N. Khairina, R. Muliono, M. Muhathir, and S. Susilawati, “Klasifikasi Daun Teh Siap Panen Menggunakan Convolutional Neural Network Arsitektur Mobilenetv2,” Jurnal Teknoinfo, vol. 18, no. 1, pp. 215–225, Jan. 2024, doi: 10.33365/JTI.V18I1.3435.
Y. Hamid, S. Wani, A. B. Soomro, A. A. Alwan, and Y. Gulzar, “Smart Seed Classification System based on MobileNetV2 Architecture,” Proceedings of 2022 2nd International Conference on Computing and Information Technology, ICCIT 2022, pp. 217–222, 2022, doi: 10.1109/ICCIT52419.2022.9711662.
A. Nada Nafisa, E. Nia Devina Br Purba, F. Aulia Alfarisi Harahap, N. Adawiyah Putri, I. Komputer, and F. Matematika dan Ilmu Pengetahuan Alam, “Implementasi Algoritma Convolutional Neural Network Arsitektur Model Mobilenetv2 Dalam Klasifikasi Penyakit Tumor Otak Glioma, Pituitary Dan Meningioma,” Jurnal Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA ), vol. 5, no. 1, pp. 53–61, Mar. 2023, doi: 10.29303/JTIKA.V5I1.234.
J. R. Ziliwu, G. C. Setyawan, and H. Budiati, “Penerapan ESP32-CAM dan TinyML dalam Klasifikasi Gambar Buah dan Sayuran,” Jutisi : Jurnal Ilmiah Teknik Informatika dan Sistem Informasi, vol. 13, no. 1, pp. 584–595, Apr. 2024, doi: 10.35889/JUTISI.V13I1.1869.
V. Gutti and R. Karthi, “Real Time Classification of Fruits and Vegetables Deployed on Low Power Embedded Devices Using Tiny ML,” Lecture Notes in Networks and Systems, vol. 514 LNNS, pp. 347–359, 2022, doi: 10.1007/978-3-031-12413-6_27.
D. Nurdiansyah, S. Satrianansyah, and A. Sobri, “SMART ROBOT OBJECT DETECTION MENGGUNAKAN ESP-32 CAM,” Jurnal Tekinkom (Teknik Informasi dan Komputer), vol. 7, no. 1, pp. 272–280, Jun. 2024, doi: 10.37600/TEKINKOM.V7I1.1296.
A. Rizqi Aprilianto, S. H. Mulyanto, S. Fatimah, H. Nurdiansari, A. Kasan Gupron, and P. Pelayaran Surabaya, “Rancang Bangun Kapal Tanpa Awak Guna Mendeteksi Navigation Lamp Untuk Menghindari Tubrukan,” Ocean Engineering : Jurnal Ilmu Teknik dan Teknologi Maritim, vol. 3, no. 2, pp. 63–79, Jun. 2024, doi: 10.58192/OCEAN.V3I2.2215.
S. A. Nugroho et al., “Rancang Bangun Sistem Deteksi Label Kardus Berbasis Model Kecerdasan Buatan YOLO dan EasyOCR serta ESP32-CAM,” JURNAL TEKNIK ELEKTRO, vol. 11, no. 2, pp. 190–200, Jun. 2022, doi: 10.26740/JTE.V11N2.P190-200.
S. Samsugi, Z. Mardiyansyah, and A. Nurkholis, “Sistem Pengontrol Irigasi Otomatis Menggunakan Mikrokontroler Arduino Uno,” Jurnal Teknologi dan Sistem Tertanam, vol. 1, no. 1, pp. 17–22, Aug. 2020, doi: 10.33365/JTST.V1I1.719.
Nisa Hanum Harani and Miftahul Hasanah, Deteksi Objek Dan Pengenalan Karakter Plat Nomor Kendaraan Indonesia Berbasis Python. Kreatif Industri Nusantara, 2020. Accessed: Sep. 24, 2024. [Online]. Available: https://books.google.co.id/books?hl=id&lr=&id=saD6DwAAQBAJ&oi=fnd&pg=PR6&dq=buku+deteksi+objek&ots=GJY75XPPxR&sig=0gMJSLcsmiN9QDZ_SiXE-oCImEw&redir_esc=y#v=onepage&q=buku%20deteksi%20objek&f=false
P. N. Dacipta and R. E. Putra, “Sistem Klasifikasi Limbah Menggunakan Metode Convolutional Neural Network (CNN) Pada Webservice Berbasis Framework Flask,” Journal of Informatics and Computer Science (JINACS), vol. 3, no. 04, pp. 394–402, May 2022, doi: 10.26740/JINACS.V3N04.P394-402.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Deteksi Objek Boneka Korban pada Kontes Robot SAR Indonesia Menggunakan ESP32-cam
Pages: 2073-2084
Copyright (c) 2024 Arahmad Taupiq, Yovi Pratama, M Irwan Bustami

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).