Analysis Of Indonesian People's Sentiment Towards 2024 Presidential Candidates On Social Media Using Naïve Bayes Classifier and Support Vector Machine
Abstract
This research aims to analyze the sentiment of the Indonesian public towards the 2024 presidential candidates on social media platforms X and Instagram. The main issue addressed is how to determine public opinion as disseminated on social media regarding the presidential candidates. To address this issue, two classification methods are used: Naïve Bayes Classifier and Support Vector Machine (SVM). The objective of this research is to measure public sentiment, both positive and negative, towards the 2024 presidential candidates using these two methods. The research findings indicate that the implementation of the Naïve Bayes method with manual labeling achieved the highest accuracy of 86% for X data and 85% for Instagram comments data. Meanwhile, with lexicon-based labeling, the highest accuracy was 60% for both X and Instagram data. The SVM method with manual labeling also achieved the highest accuracy of 86% for X data and 85% for Instagram data. With lexicon-based labeling, the highest accuracy was 60% for X data and 70% for Instagram data. This research concludes that both Naïve Bayes and SVM demonstrate strong performance in sentiment analysis on social media, with SVM slightly outperforming in some scenarios. The implementation of these two methods provides valuable insights into public opinion towards the 2024 presidential candidates on social media.
Downloads
References
M. D. J. Wardana et al., “Pengaruh Sejarah Pemilihan Umum Terhadap Sistem Ketatanegaraan Dan Hubungannya Dengan Demokrasi,” Jurnal Ilmu Hukum dan Tata Negara, vol. 2, no. 2, pp. 84–93, 2024, doi: 10.55606/birokrasi.v2i2.1168.
M. Yusuf, M. Jannah, N. Rahmi, P. A. Dewi, and U. F. Husaini, “Menggali Makna Pemilihan Umum : Peran, Sejarah, dan Tantangan Demokrasi,” Jurnal Puan Indonesia, vol. 5, no. 2, pp. 656–667, 2024, doi: 10.37296/jpi.v5i2.231.
R. S. Agustin, “INSTAGRAM SEBAGAI MEDIA KOMUNIKASI E-GOVERNMENT DALAM PELAYANAN PUBLIK DAN PEMBANGUNAN PEMERINTAH KOTA MADIUN,” Retorika: Jurnal Komunikasi, Sosial dan Ilmu Politik, vol. 1, no. 1, pp. 90–97, 2024, Accessed: Aug. 09, 2024. [Online]. Available: https://jurnal.kolibi.org/index.php/retorika/article/view/1249
M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” SMATIKA Jurnal: STIKI Informatika Jurnal, vol. 10, no. 02, pp. 71–76, 2020, doi: 10.32664/smatika.v10i02.455.
A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “ANALISIS SENTIMEN APLIKASI RUANG GURU DI TWITTER MENGGUNAKAN ALGORITMA KLASIFIKASI,” Jurnal Teknoinfo, vol. 14, no. 2, pp. 116–124, Jul. 2020, doi: 10.33365/jti.v14i2.679.
A. P. Nardilasari, A. L. Hananto, S. S. Hilabi, T. Tukino, and B. Priyatna, “Analisis Sentimen Calon Presiden 2024 Menggunakan Algoritma SVM Pada Media Sosial Twitter,” JOINTECS: Journal of Information Technology anda Computer Science), vol. 8, no. 1, pp. 11–18, 2023, doi: 10.31328/jointecs. v8i1.4265.
M. N. Zarti, E. Sahputra, A. Sonita, and Y. Apridiansyah, “Penerapan Data Mining Menggunakan Metode Klasifikasi Naïve Bayes Untuk Memprediksi Partisipasi Minat Mayarakat Pada Pemilu 2024,” Jurnal Komputer, Informasi dan Teknologi, vol. 3, no. 1, pp. 105–114, 2023, doi: 10.53697/jkomitek.v3i1.
D. S. Nugroho, I. F. Hanif, M. A. Hasbi, F. Fredianto, A. M. Saputra, and R. Zildjian, “Analisis Sentimen Dugaan Pelanggaran Pemilu 2024 Berdasarkan Tweet Menggunakan Algoritma Naïve Bayes Classifier,” MALCOM: Indonesian Journal of Machine Learning anda Computer Science, vol. 4, no. 3, pp. 1169–1176, 2024, doi: 10.57152/malcom.v4i3.1496.
D. Faroek, M. Yusuf, and G. Syatauw, “Sentiment Analysis of the Popularity of Parties Supporting the 2024 Presidential Candidates on Twitter Using the Naive Bayes Classifier Algorithm,” Antivirus : Jurnal Ilmiah Teknik Informatika, vol. 17, no. 2, pp. 216–227, Nov. 2023, doi: 10.35457/antivirus.v17i2.3261.
B. M. Iqbal, K. M. Lhaksmana, and E. B. Setiawan, “2024 Presidential Election Sentiment Analysis in News Media Using Support Vector Machine,” Journal of Computer System and Informatics (JoSYC), vol. 4, no. 2, pp. 397–404, Feb. 2023, doi: 10.47065/josyc.v4i2.3051.
F. Nurrizky and S. Dwiasnati, “Comparison of Naive Bayes and Support Vector Machine (SVM) Algorithms Regarding The Popularity of Presidential Candidates In The Upcoming 2024 Presidential Election,” Computer Engineering and Applications (ComEngApp) Journal, vol. 13, no. 1, pp. 17–28, 2024, doi: 10.18495/comengapp.v13i1.459.
O. H. Rahman, G. Abdillah, and A. Komarudin, “Klasifikasi Ujaran Kebencian pada Media Sosial Twitter Menggunakan Support Vector Machine,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 17–23, Feb. 2021, doi: 10.29207/resti.v5i1.2700.
A. R. Abdillah and F. N. Hasan, “Analisis Sentimen Terhadap Kandidat Calon Presiden Berdasarkan Tweets Di Sosial Media Menggunakan Naive Bayes Classifier,” SMATIKA JURNAL: STIKI Informatika Jurnal, vol. 13, no. 01, pp. 117–130, Jul. 2023, doi: 10.32664/smatika.v13i01.750.
Y. Findawati, U. Indahyanti, Y. Rahmawati, and R. Puspitasari, “Sentiment Analysis of Potential Presidential Candidates 2024: A Twitter-Based Study,” Academia Open, vol. 8, no. 1, Aug. 2023, doi: 10.21070/acopen.8.2023.7138.
S. L. Ramadhan and W. Windarto, “Penerapan Naive Bayes untuk Menganalisis Sentimen Pengguna Twitter Terhadap Penetapan Calon Presiden 2024 PDIP,” Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI), vol. 2, no. 2, pp. 716–725, 2023, [Online]. Available: https://senafti.budiluhur.ac.id/index.php/senafti/article/view/846
A. A. Firdaus, A. Yudhana, and I. Riadi, “Analisis Sentimen Pada Proyeksi Pemilihan Presiden 2024 Menggunakan Metode Support Vector Machine,” Decode: Jurnal Pendidikan Teknologi Informasi, vol. 3, no. 2, pp. 236–245, Jun. 2023, doi: 10.51454/decode.v3i2.172.
F. A. Ramadhan and P. H. Gunawan, “Sentiment Analysis of 2024 Presidential Candidates in Indonesia: Statistical Descriptive and Logistic Regression Approach,” 2023 International Conference on Data Science and Its Applications (ICoDSA), pp. 327–332, 2023, doi: 10.1109/ICoDSA58501.2023.10276417.
S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 2, p. 406, Apr. 2021, doi: 10.30865/mib.v5i2.2835.
A. Mustofa and R. Novita, “Klasifikasi Sentimen Masyarakat Terhadap Pemberlakuan Pembatasan Kegiatan Masyarakat Menggunakan Text Mining Pada Twitter,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 1, pp. 200–208, Jun. 2022, doi: 10.47065/bits.v4i1.1628.
D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J-SAKTI (Jurnal Sains Komputer dan Informatika), vol. 5, no. 2, pp. 697–711, 2021, doi: 10.30645/j-sakti.v5i2.369.
S. Juniarsih, E. F. Ripanti, and E. E. Pratama, “Implementasi Naive Bayes Classifier pada Opinion Mining Berdasarkan Tweets Masyarakat Terkait Kinerja Presiden dalam Aspek Ekonomi,” JUSTIN (Jurnal Sistem dan Teknologi Informasi), vol. 8, no. 3, pp. 239–249, 2020, doi: 10.26418/justin.v8i3.39118.
B. Kurniawan, A. A. Aldino, and A. R. Isnain, “Sentimen Analisis Terhadap Kebijakan Penyelenggara Sistem Elektronik (Pse) Menggunakan Algoritma Bidirectional Encoder Representations From Transformers (Bert),” J. Teknol. dan Sist. Inf, vol. 3, no. 4, pp. 98–106, 2022, doi: 10.33365/jtsi.v3i4.2204.
H. Syah and A. Witanti, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (Svm),” Jurnal Sistem Informasi Dan Informatika (Simika), vol. 5, no. 1, pp. 59–67, 2022, doi: 10.47080/simika.v5i1.1411.
N. Q. Rizkina and F. N. Hasan, “Analisis Sentimen Komentar Netizen Terhadap Pembubaran Konser NCT 127 Menggunakan Metode Naive Bayes,” Journal of Information System Research (JOSH), vol. 4, no. 4, pp. 1136–1144, Jul. 2023, doi: 10.47065/josh.v4i4.3803.
F. Taufiqurrahman, S. Al Faraby, and M. D. Purbolaksono, “Klasifikasi teks multi label pada hadis terjemahan bahasa indonesia menggunakan chi-square dan svm,” eProceedings of Engineering, vol. 8, no. 5, 2021.
E. Hasibuan and E. A. Heriyanto, “Analisis Sentimen Pada Ulasan Aplikasi Amazon Shopping Di Google Play Store Menggunakan Naive Bayes Classifier,” Jurnal Teknik dan Science, vol. 1, no. 3, pp. 13–24, 2022, doi: 10.56127/jts.v1i3.434.
A. Y. Simanjuntak, I. S. S. Simatupang, and A. Anita, “Implementasi Data Mining Menggunakan Metode Naïve Bayes Classifier untuk Data Kenaikan Pangkat Dinas Ketenagakerjaan Kota Medan,” Journal of Science and Social Research, vol. 5, no. 1, pp. 85–91, 2022, doi: 10.54314/jssr.v5i1.804.
J. Sihombing, “Klasifikasi Data Antroprometri Individu Menggunakan Algoritma Naïve Bayes Classifier,” BIOS: Jurnal Teknologi Informasi dan Rekayasa Komputer, vol. 2, no. 1, pp. 1–10, 2021, doi: 10.37148/bios.v2i1.15.
A. C. Khotimah and E. Utami, “COMPARISON NAÏVE BAYES CLASSIFIER, K-NEAREST NEIGHBOR AND SUPPORT VECTOR MACHINE IN THE CLASSIFICATION OF INDIVIDUAL ON TWITTER ACCOUNT,” Jurnal Teknik Informatika (JUTIF), vol. 3, no. 3, pp. 673–680, 2022, doi: 10.20884/1.jutif.2022.3.3.254.
F. Amirullah, S. Alam, and M. I. Sulistyo S, “Analisis Sentimen Terhadap Kinerja KPU Menjelang Pemilu 2024 Berdasarkan Opini Twitter Menggunakan Naïve Bayes,” Jurnal Ilmiah Teknik dan Ilmu Komputer, vol. 2, no. 3, pp. 69–76, 2023, doi: 10.55123/storage.v2i3.2293.
D. P. Ray, F. N. Hasan, and A. R. Dzikrillah, “Analisis Sentimen Terhadap KPU 2024 Berdasarkan Tweet Media Sosial Twitter Menggunakan Algoritma Naïve Bayes,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 4, pp. 2235–2243, 2024, doi: 10.30865/klik.v4i4.1587.
G. Gunawan and Y. Reswan, “DESAIN APLIKASI PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE SUPPORT VECTOR MACHINE (SVM),” Jurnal Media Infotama, vol. 17, no. 1, pp. 8–12, 2021, doi: 10.37676/jmi.v17i1.1311.
R. Pramestiawan, “KOMPARASI ALGORITMA SUPORT VECTOR MACHINE DAN NAIVE BAYES DALAM ANALISIS SENTIMEN KEBIJAKAN PPKM,” Jurnal Sistem Informasi dan Manajemen Basis Data, vol. 5, no. 2, pp. 23–32, 2022, doi: 10.30873/simada.v5i2.3427.
A. I. Nurhidayat, A. Asmunin, and D. Fatrianto, “Prediksi Kinerja Akademik Mahasiswa Menggunakan Machine Learning dengan Sequential Minimal Optimization untuk Pengelola Program Studi,” Journal of Information Engineering and Educational Technology, vol. 5, no. 2, 2021, doi: 10.26740/jieet.v5n2.p84-91.
F. Listanto, M. Fatchan, and W. Hadikristanto, “Prediction of Casting Product Defects Using SVM Algorithm Based on RBF and Linear,” Jurnal Ilmiah Intech : Information Technology Journal of UMUS, vol. 5, no. 2, pp. 109–119, 2023, doi: 10.46772/intech.v5i2.1376.
A. R. Damanik, S. Annisa, A. I. Rafeli, A. S. Liana, and D. S. Prasvita, “Klasifikasi Jenis Buah Cherry Menggunakan Support Vector Machine (SVM) Berdasarkan Tekstur dan Warna Citra,” Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA) Jakarta-Indonesia, pp. 302–311, 2022, [Online]. Available: https://www.kaggle.com/moltean/fruits
M. N. Winnarto, M. Mailasari, and A. Purnamawati, “KLASIFIKASI JENIS TUMOR OTAK MENGGUNAKAN ARSITEKTURE MOBILENET V2,” Jurnal SIMETRIS, vol. 13, no. 2, pp. 1–12, 2022.
M. Sholawati, K. Auliasari, and F. X. Ariwibisono, “PENGEMBANGAN APLIKASI PENGENALAN BAHASA ISYARAT ABJAD SIBI MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN),” Jurnal Mahasiswa Teknik Informatika, vol. 6, no. 1, pp. 134–144, 2022, doi: 10.36040/jati.v6i1.4507.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analysis Of Indonesian People's Sentiment Towards 2024 Presidential Candidates On Social Media Using Naïve Bayes Classifier and Support Vector Machine
Pages: 950-960
Copyright (c) 2024 Nia Mardiah, Leni Marlina, Khairul Khairul, Zulham Sitorus, Muhammad Iqbal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).