Content-Based Music Recommender System Using Deep Neural Network
Abstract
Music is one of the most popular forms of entertainment. Along with the development of information technology, music streaming platforms such as Spotify, Apple Music, and Deezer are increasingly popular among users. However, with thousands of songs available on these music streaming platforms, users often have difficulty finding songs that suit their tastes. Therefore, we design a music recommender system that can assist users in finding songs that are more in line with user preferences. In this research, we propose the development of a content-based music recommender system using a combination of Content-Based Filtering and Deep Neural Network (DNN) methods. The DNN used is Convolutional Neural Network (CNN) which serves to increase the percentage of accuracy to provide results that match user needs. This research aims to develop a music recommender system that can provide personalized recommendations to users according to the preferences of users. This research provides an accuracy result of 73.5%. From these results, it has been proven that the resulting music recommendations can be an alternative to the existing Collaborative Filtering-based recommender system.
Downloads
References
. Ziemans Hendratama Majid, “Analisis Penerapan Pola Freemium Dalam Model Bisnis Aplikasi Streaming Musik,” 2018.
. R. Amanda, “Music Streaming Dalam Industri Musik Era Industri 4.0,” Jurnal Studi Komunikasi (Indonesian Journal Of Communications Studies), Vol. 6, No. 1, Pp. 358–382, Mar. 2022, Doi: 10.25139/Jsk.V6i1.3772.
. N. Ula, C. Setianingsih, And R. A. Nugrahaeni, “Sistem Rekomendasi Lagu Dengan Metode Content-Based Filtering Berbasis Website Web-Based Song Recommendation System Using Content-Based Filtering,” 2021.
. R. Nur Anggraeni, P. Pratama, A. Sujjada, And A. Fergina, “Prediksi Penyakit Jantung Menggunakan Metode Deep Neural Network Dengan Memanfaatkan Internet Of Things,” 2022, Doi: 10.37034/Jidt.V5i1.330.
. Rena, P. N. (2019). Penerapan metode convolutional neural network pada pendeteksi gambar notasi balok (Bachelor's thesis, Fakultas Sains dan Teknologi Universitas Islam Negeri Syarif Hidayatullah Jakarta).
. Syarif Fitri, “Analisa Semiotik Makna Motivasi Lirik Lagu ‘Cerita Tentang Gunung Dan Laut’ Karya Payung Teduh,” 2017.
. Adiyansjah, A. A. S. Gunawan, And D. Suhartono, “Music Recommender System Based On Genre Using Convolutional Recurrent Neural Networks,” In Procedia Computer Science, Elsevier B.V., 2019, Pp. 99–109. Doi: 10.1016/J.Procs.2019.08.146.
. A. Niyazov, E. Mikhailova, And O. Egorova, “Content-Based Music Recommendation System,” 2019.
. M. Schedl, “Deep Learning In Music Recommendation Systems,” Frontiers In Applied Mathematics And Statistics, Vol. 5. Frontiers Media S.A., Aug. 29, 2019. Doi: 10.3389/Fams.2019.00044.
. N. Yarahmadi Gharaei, C. Dadkhah, And L. Daryoush, “Content-Based Clothing Recommender System Using Deep Neural Network,” In 26th International Computer Conference, Computer Society Of Iran, Csicc 2021, Institute Of Electrical And Electronics Engineers Inc., Mar. 2021. Doi: 10.1109/Csicc52343.2021.9420544.
. M. Martijn, C. Conati, K. Verbert, M. Millecamp, C. Conati, And K. Verbert, “‘Knowing Me, Knowing You’: Personalized Explanations For A Music Recommender System.”
. R. Restu Hadi And R. Ferdian, “Analisis Komponen Melodi, Ritme, Dan Harmoni Dalam Lagu ‘Tan Malaka’ Karya Geliga: Tinjauan Musik Konvensional,” Jurnal Sendratasik, Vol. 12, No. 4, P. 497, Dec. 2023, Doi: 10.24036/Js.V12i4.125764.
. H. H. Arfisko, “Sistem Rekomendasi Film Menggunakan Metode Hybrid Collaborative Filtering Dan Content-Based Filtering,” 2022.
. Shabrina Zhafarina Putri, “Rekomendasi Barang Pada E-Commerce Menggunakan Content Based Recommender System Berbasis Ethereum Blockchain,” 2023.
. A. Tjahyanto And F. J. Atletiko, “Peningkatan Kinerja Pengklasifikasi Objek Bawah Laut Dengan Deep Learning,” Matrik : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, Vol. 21, No. 3, Pp. 753–760, Jul. 2022, Doi: 10.30812/Matrik.V21i3.1466.
. I. Suhardin, A. Patombongi, A. Muhammad Islah, And S. H. Catur Sakti Kendari Jl Abdullah, “Mengidentifikasi Jenis Tanaman Berdasarkan Citra Daun Menggunakan Algoritma Convolutional Neural Network,” Vol. 6, No. 2, 2021.
. Tutut Furi Kusumaningrum, “Implementasi Convolution Neural Network (Cnn) Untuk Klasifikasi Jamur Konsumsi Di Indonesia Menggunakan Keras,” 2018.
. A. S. Riyadi, I. P. Wardhani, D. S. Widayati, And K. Kunci, “Klasifikasi Citra Anjing Dan Kucing Menggunakan Metode Convolutional Neural Network (Cnn),” Universitas Gunadarma Jl. Margonda Raya No, Vol. 5, No. 1, P. 12140, 2021.
. A. A. Santosa, R. Y. N. Fu’adah, And S. Rizal, “Deteksi Penyakit Pada Tanaman Padi Menggunakan Pengolahan Citra Digital Dengan Metode Convolutional Neural Network,” Journal Of Electrical And System Control Engineering, Vol. 6, No. 2, Pp. 98–108, Feb. 2023, Doi: 10.31289/Jesce.V6i2.7930.
. K. Rega, I. Christianto O, And H. Setiawan, “Implementasi Convolutional Neural Network Untuk Sistem Prediksi Pigmen Fotosintesis Pada Tanaman Secara Real Time,” Pp. 2443–2229, 2018, Doi: 10.28932/Jutisi.V4i2.812.
. F. Sofiyana, R. Andrian, And R. Safe’i, “Klik: Kajian Ilmiah Informatika Dan Komputer Mobilenet Untuk Identifikasi Skala Kerapatan Dan Transparansi Tajuk Pohon Daun Lebar,” Media Online, Vol. 4, No. 3, Pp. 1850–1859, 2023, Doi: 10.30865/Klik.V4i3.1476.
. A. Tiarasari And E. Haryatmi, “Penerapan Convolutional Neural Network Deep Learning Dalam Pendeteksian Citra Biji Jagung Kering,” Jurnal Resti (Rekayasa Sistem Dan Teknologi Informasi), Vol. 5, No. 2, Pp. 265–271, Apr. 2021, Doi: 10.29207/Resti.V5i2.3040.
. D. Purnomo, “Model Prototyping Pada Pengembangan Sistem Informasi,” Jimp-Jurnal Informatika Merdeka Pasuruan, Vol. 2, No. 2, 2017.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Content-Based Music Recommender System Using Deep Neural Network
Pages: 1111-1119
Copyright (c) 2024 Z. K. A. Baizal, Rich Andiety
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).