Sistem Keamanan Dua Lapis Dengan RFID dan Pendeteksi Objek Dengan Machine Learning


  • Jhonatan Jhonatan Fakultas Teknik ,Program Studi Teknik Elektro, Universitas Pamulang, Indonesia
  • Kartika Sekarsari * Mail Fakultas Teknik ,Program Studi Teknik Elektro, Universitas Pamulang, Indonesia https://orcid.org/0000-0002-9464-1532
  • (*) Corresponding Author
Keywords: RFID; Machine Learning; Arduino UNO; Radio Frequency Identification; ESP32-CAM

Abstract

Conventional locking systems with physical keys are still widely used to secure the house door. Additionally, marketed security devices often come with various features but only have one security method used as the access key for the security system. This research designs a two-layer security system by sequentially applying two security methods: Radio Frequency Identification (RFID) and object detection, with Arduino UNO as the main microcontroller. In designing the two-layer security device for the room door, the RFID MFRCC22 module and OV2640 camera are used on the ESP32-CAM microcontroller. Testing results show that this device can function well using an RFID card in the first layer and small objects with maximum dimensions of 20 cm in length, width, and height in the second layer. With an operating voltage of 5Vdc and a current requirement of 150mA to 250mA, this system has high efficiency with low power consumption. The response time required to access this two-layer security system is 5.71 seconds to 6.57 seconds. The maximum distance between the RFID card and the RFID Reader is 5 cm, and between the ESP32-CAM camera and the object is between 5 cm and 40 cm. Additionally, the minimum number of image samples required for each object with different positions and angles to be applied to the ESP32-CAM microcontroller is 75 image samples with RGB color parameter configuration and 48x48 pixel image size, resulting in an F1-Score percentage of 100% so that the ESP32-CAM microcontroller can recognize objects between different object models. The F1-Score value in the Background column is 1.00, the Charger Hp column is 1.00, the Motorcycle Key column is 1.00, and the Leagoo column is 1.00.

Downloads

Download data is not yet available.

References

F. F. Ulahaijananan, “Rancang Bangun Alat Pengaman Pintu Secara Otomatis Menggunakan Rfid Berbasis Mikrokontroler Arduino,” J. Sos. dan Teknol. Terap. AMATA, vol. 1, no. 2, pp. 1–5, 2022, doi: 10.55334/sostekam.v1i2.289.

T. Anggelia Erika and Elfizon, “Sistem Keamanan Berlapis Pada Pintu Menggunakan RFID, Fingerprint dan Keypad dengan Output Suara Berbasis Internet Of Things ESP32,” JTEIN J. Tek. Elektro Indones., vol. 4, no. 1, pp. 226–234, 2023.

M. Hamim, “Penggunaan Teknologi Berbasis RFID untuk Security System di Perpustakaan IAIN Kediri,” Indones. J. Acad. Librariansh., vol. 2, no. 2, pp. 13–20, 2018.

N. K. Daulay and M. N. Alamsyah, “MONITORING SISTEM KEAMANAN PINTU MENGGUNAKAN RFID DAN FINGERPRINT BERBASIS WEB DAN DATABASE,” Jusikom J. Sist. Komput. Musirawas, vol. 4, no. 02, 2019, doi: 10.32767/jusikom.v4i2.632.

Q. Aini, N. Lutfiani, H. Kusumah, and M. S. Zahran, “Deteksi dan Pengenalan Objek Dengan Model Machine Learning: Model Yolo,” CESS (Journal Comput. Eng. Syst. Sci., vol. 6, no. 2, 2021, doi: 10.24114/cess.v6i2.25840.

J. W. Simatupang and R. W. Tambunan, “Security Door Lock Using Multi-Sensor System Based on RFID, Fingerprint, and Keypad,” 2022 Int. Conf. Green Energy, Comput. Sustain. Technol. GECOST 2022, pp. 453–457, 2022, doi: 10.1109/GECOST55694.2022.10010367.

R. S. Martin and Y. Dewanto, “Prototipe kunci pintu otomatis menggunakan sensor kamera berbasis raspberry,” J. Teknol. Ind., vol. 12, no. 1, pp. 21–29, 2023.

V. Jones, “METODE VIOLA JONES MENGGUNAKAN ESP32-CAM,” vol. 9, no. 1, pp. 94–102, 2022.

D. Kurniawan and Nopriadi, “Rancang Bangun Sistem Akses Kontrol Perumahan Menggunakan Sensor Finger Print Berbasis,” J. Comaise, vol. 04, no. 1, pp. 1–10, 2021.

P. O. Makanjuola, E. S. Shokenu, H. O. Araromi, P. O. Idowu, and J. D. Babatunde, “An Rfid-Based Access Control System Using Electromagnetic Door Lock and an Intruder Alert System,” J. Eng. Res. Reports, no. July, pp. 7–17, 2022, doi: 10.9734/jerr/2022/v22i1117574.

B. Unhelkar, S. Joshi, M. Sharma, S. Prakash, A. K. Mani, and M. Prasad, “Enhancing supply chain performance using RFID technology and decision support systems in the industry 4.0–A systematic literature review,” Int. J. Inf. Manag. Data Insights, vol. 2, no. 2, 2022, doi: 10.1016/j.jjimei.2022.100084.

T. Mabad, O. Ali, M. Ally, S. F. Wamba, and K. C. Chan, “Making Investment Decisions on RFID Technology: An Evaluation of Key Adoption Factors in Construction Firms,” IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3063301.

M. Fauza and M. A. Muthalib, “SISTEM PENGAMAN PINTU OTOMATIS MENGGUNAKAN SENSOR RADIO FREQUENCY IDENTIFICATION (RFID) BERBASIS ARDUINO UNO,” J. Energi Elektr., vol. 11, no. 1, 2022, doi: 10.29103/jee.v11i1.8185.

C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electron. Mark., vol. 31, no. 3, 2021, doi: 10.1007/s12525-021-00475-2.

A. Paleyes, R. G. Urma, and N. D. Lawrence, “Challenges in Deploying Machine Learning: A Survey of Case Studies,” ACM Comput. Surv., vol. 55, no. 6, 2022, doi: 10.1145/3533378.

A. F. Ibrahim, F. Dewanta, and S. Raniprima, “Implementasi Machine Learning Pada Alat Deteksi Emosi Untuk Sistem Kontrol Suhu Dan Pencahayaan Ruangan,” e-Proceeding Eng., vol. 9, no. 2, 2022.

A. Hermawan, L. Lianata, Junaedi, and A. R. K. Maranto, “Implementasi Machine Learning Sebagai Pengenal Nominal Uang Rupiah dengan Metode YOLOv3,” SATIN - Sains dan Teknol. Inf., vol. 8, no. 1, 2022, doi: 10.33372/stn.v8i1.816.

Z. H. Batubara, Y. Hamonangan, M. Arfan, and A. Hidayatno, “PERANCANGAN SISTEM DETEKSI PELANGGARAN PENGGUNAAN HELM DENGAN METODE DEEP LEARNING MENGGUNAKAN YOLOV5 ULTRALYTIC,” Transient J. Ilm. Tek. Elektro, vol. 13, no. 1, 2024, doi: 10.14710/transient.v13i1.11-20.

A. Tholib, Implementasi Algoritma Machine Learning Berbasis Web dengan Framework Streamlit, vol. 01. 2017.

R. A. Zakiah, S. Wahjuni, and W. B. Suwarno, “Pemilihan Algoritma Machine Learning untuk Perangkat dengan Komputasi Terbatas pada Deteksi Kematangan Buah Melon Berjala,” J. Ilmu Komput. dan Agri-Informatika, vol. 10, no. 2, 2023, doi: 10.29244/jika.10.2.189-199.

A. Mathematics, “Slamet Purwo Santoso, Fajar Wijayanto, M.Kom2 RANCANG BANGUN AKSES PINTU DENGAN SENSOR SUHU DAN HANDSANITIZER OTOMATIS BERBASIS ARDUINO,” vol. 10, no. 1, pp. 1–23, 2022.

Ade Aso.S.Pd, “Pengelolaan Pendidikan Yayasan Bpi Dalam Era Transformasi Digital Dijes Inovasi Ssistem Buku Tamu Digital Berbasis Rfid Di Lingkunngan Bpi,” no. 8, 2022.

R. B. Putri, A. Hartaman, and D. Darlis, “Perancangan Pendeteksi Suhu Tubuh Dan Masker Menggunakan ESP32 Cam Dengan Fitur Suara,” Proceeding Appl. Sci., vol. 9, no. 1, pp. 199–210, 2023.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 4510–4520, 2018, doi: 10.1109/CVPR.2018.00474.

S. Hymel et al., “Edge Impulse: An MLOps Platform for Tiny Machine Learning,” 2022.

M. Omelchenko and V. Hotsyanivskyy, “IMAGE PROCESSING ON ESP32 MICROCONTROLLERS BASED ON MOBILENET,” no. July, 2022, doi: 10.36074/logos-20.05.2022.048.

K. Mubarok, T. Wibowo, and S. S. Wibowo, “Kaji Awal Pendeteksi Api Menggunakan Kamera denganProgram Machine Learning,” pp. 13–14, 2022.

S. Hoon Yoon et al., “IoT Open-Source and AI based Automatic Door Lock Access Control Solution,” Int. J. Internet, Broadcast. Commun., vol. 12, no. 2, p. 9, 2020.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Sistem Keamanan Dua Lapis Dengan RFID dan Pendeteksi Objek Dengan Machine Learning

Dimensions Badge
Article History
Submitted: 2024-08-06
Published: 2024-09-12
Abstract View: 45 times
PDF Download: 21 times
How to Cite
Jhonatan, J., & Sekarsari, K. (2024). Sistem Keamanan Dua Lapis Dengan RFID dan Pendeteksi Objek Dengan Machine Learning. Building of Informatics, Technology and Science (BITS), 6(2), 1059-1070. https://doi.org/10.47065/bits.v6i2.5747
Section
Articles