Perbandingan Metode K-Means dan K-Medoids Untuk Clustering Jenis Kriminalitas


  • Nurul Azizah Universitas Buana Perjuangan Karawang, Indonesia
  • Ahmad Fauzi Universitas Buana Perjuangan Karawang, Indonesia
  • Tatang Rohana Universitas Buana Perjuangan Karawang, Indonesia
  • Sutan Faisal * Mail Universitas Buana Perjuangan Karawang, Indonesia
  • (*) Corresponding Author
Keywords: Crime; Data Mining; K-Means; K-Medoids; Clustering

Abstract

Crime in Indonesia includes acts that violate the law, social norms and religion which cause economic and psychological losses as well as social tensions in society. Crimes such as theft, violence, fraud and drugs are often triggered by factors such as poverty and environmental conditions that support criminal behavior. This research needs to be carried out to overcome the complex and far-reaching crime problem in Indonesia, especially in Karawang Regency. With crimes such as theft, violence, fraud and drugs on the rise, often fueled by factors such as poverty and environmental conditions, a more effective approach is needed to understand and address these problems. This research uses data mining techniques, especially cluster analysis, to group types of crime. The aim is to identify existing crime patterns and understand the factors that influence their spread. Thus, the results of this research can help the authorities in developing more targeted crime prevention and handling strategies, so as to minimize the negative impact of crime in the area. Apart from that, this research also contributes to increasing knowledge regarding the most effective methods for analyzing crime data, which can be applied in other areas with similar problems. The results of the research show that the K-Means algorithm is more effective than K-Medoids in handling data variability, with a Silhouette Coefficient value of 0.482 and a Davies Bouldin Index of 0.915. It is hoped that the implementation of this algorithm will make it easier to identify and handle crimes in the area.

Downloads

Download data is not yet available.

References

J. FButarbutar, N. Budi Nugroho, dan W. Rista Maya, “Implementasi Data Mining untuk Mengelompokkan Daerah Rawan Tindakan Kriminal di Kota Medan Menggunakan Metode K-Means,” Jurnal CyberTech, vol. 4, no. 3, 2021,doi :https://doi.org/10.53513/jct.v4i3.3793

P. S. Rosiana dkk., “Visualisasi Data Tindak Kejahatan Berdasarkan Jenis Kriminalitas di Kabupaten Karawang dengan Menggunakan Algoritma Clustering K-Means,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 11, no. 3, hlm. 2830–7062, 2023, doi: 10.23960/jitet.v11i3%20s1.3347.

R. Astuti dan F. Muhammad Basysyar, “Penerapan Data Mining Clustering Menggunakan Metode K-Means pada Data Tindak Kriminalitas di Polres Kabupaten Kuningan,” Vol.8 No. 2, 2024. doi : https://doi.org/10.36040/jati.v8i2.8790

D. Gultom dkk., “Penerapan Algoritma K-Means untuk Mengetahui Tingkat Tindak Kejahatan di Daerah Pematangsiantar,” Jurnal Teknologi Informasi, vol. 4, no. 1, pp 2580-7927, 2020.

R. N. Fahmi, M. Jajuli, N. Sulistiyowati, “Analisis Pemetaan Tingkat Kriminalitas di Kabupaten Karawang Menggunakan Algoritma K-Means,” Journal of Information Technology and Computer Science (INTECOMS), vol. 4, no. 1, 2021, doi : https://doi.org/10.31539/intecoms.v4i1.2413

H. S. Firdaus, A. L. Nugraha, B. Sasmito, M. Awaluddin, dan C. A. Nanda, “Perbandingan Metode Fuzzy C-Means dan K-Means untuk Pemetaan Daerah Rawan Kriminalitas di Kota Semarang,” Vol. 4, No. 01, 2021. doi : https://doi.org/10.14710/halal.v%25vi%25i.9219

Sekar Setyaningtyas, B. Indarmawan Nugroho, dan Z. Arif, “Tinjauan Pustaka Sistematis: Penerapan Data Mining Teknik Clustering Algoritma K-Means,” Jurnal Teknoif Teknik Informatika Institut Teknologi Padang, vol. 10, no. 2, hlm. 52–61, Okt 2022, doi: 10.21063/jtif.2022.v10.2.52-61.

H. Dame Tampubolon, M. Safii, dan D. Suhendro, “Penerapan Algoritma K-Means dan K-Medoids Clustering untuk Mengelompokkan Tindak Kriminalitas Berdasarkan Provinsi,” vol. 2, no. 2, hlm. 6–12, 2021

N. A. Kamilah, T. Rohana, dan A. Fauzi, “JURNAL MEDIA INFORMATIKA BUDIDARMA Implementasi Algoritma K-Means dan K-Medoids Dalam Klasterisasi Kasus Kekerasan Terhadap Perempuan,” 2024, doi: 10.30865/mib.v8i2.7558.

B. Biantara, T. Rohana, dan A. Ratna Juwita, “Perbandingan Algoritma K-Means dan DBSCAN untuk Pengelompokan Data Penyebaran Covid-19 Seluruh Kecamatan di Provinsi Jawa Barat,” vol. IV, no. 1, pp 88-94, 2023.

L. Adeliana, A. Mutoi Siregar, dan D. Sulistya Kusumaningrum, “Pengelompokan Kabupaten dan Kota di Indonesia Berdasarkan Hasil Produksi Daging Sapi Menggunakan Algoritma K-Means dan K-Medoids,” vol. II, no. 1, 2021.

R. Hidayat, “Clustering Menggunakan Algoritma K-Means untuk Mengelompokan Wilayah Rawan Kejahatan di Wilayah Kabupaten Solok.” Vol.4 No.5, 2022. doi : https://doi.org/10.32639/jimmba.v4i5.169

Y. Mayona, R. Buaton, dan M. Simanjutak, “Data Mining Clustering Tingkat Kejahatan Dengan Metode Algoritma K-Means (Studi Kasus : Kejaksaan Negeri Binjai),” Agustus, vol. 6, no. 3, 2022.

J. Homepage dkk., “Perbandingan K-Means dan K-Medoids Pada Pengelompokan Data Miskin di Indonesia,” Institut Riset dan Publikasi Indonesia. Vol. 2, no. 2, hlm. 35–41, 2022. doi : https://doi.org/10.57152/malcom.v2i2.422

I. Zuhdi Muzakkiy -, K. Husein -, K. Antonius -, K. Raihan Hidayat -, E. Emir Di Haryanto -, dan I. Paryudi -, “Penggunaan Algoritma K-Means Pada Metode Clustering Untuk Menganalisa Tindak Kriminal.”Jurnal of Informatics and Advanced Computing. Vol.4 No.1, pp 16-21, 2023.

A. Abbas dkk., “Implementation of clustering unsupervised learning using K-Means mapping techniques,” IOP Conf Ser Mater Sci Eng, vol. 1088, no. 1, hlm. 012004, Feb 2021, doi: 10.1088/1757-899x/1088/1/012004.

M. Khoncita Dasriana Bau, Y. Setyawan, M. Titah Jatipaningrum, J. Statistika, F.” Perbandingan Metode Algoritma K-Means dan K-Medoids pada Pengelompokan Kabupaten/Kota di Provinsi Nusa Tenggara Timur Berdasarkan Dimensi Indeks Pembangunan Manusia Tahun 2020,” “Jurnal Statistika Industri dan Komputasi” vol. 08, no. 1, hlm. 48–57, 2023

A. M. Siregar, “Pengelompokan Bidang Laju Pertumbuhan Ekonomi Indonesia Menggunakan Algoritma K-Means.”Accounting Information System. Vol.2 No.2, 2019. doi: https://doi.org/10.32627/aims.v2i2.342

A. B. Sarana, I. Yogyakarta, N. Sari, H. H. Handayani, dan A. M. Siregar, “Implementasi Clustering Data Kasus Covid 19 Di Indonesia Menggunakan Algoritma K-Means,” Bianglala Informatika : Jurnal Komputer dan Informatika vol. 11. No.1, 2023. doi : https://doi.org/10.31294/bi.v11i1.14762

C. Ayudia, S. Fastaf, dan Y. Yamasari, “Analisa Pemetaan Kriminalitas Kabupaten Bangkalan Menggunakan Metode K-Means dan K-Means++,” Journal of Informatics and Computer Science, vol. 03, 2022. doi: https://doi.org/10.26740/jinacs.v3n04.p534-546


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Perbandingan Metode K-Means dan K-Medoids Untuk Clustering Jenis Kriminalitas

Dimensions Badge
Article History
Submitted: 2024-08-01
Published: 2024-09-12
Abstract View: 23 times
PDF Download: 19 times
How to Cite
Azizah, N., Fauzi, A., Rohana, T., & Faisal, S. (2024). Perbandingan Metode K-Means dan K-Medoids Untuk Clustering Jenis Kriminalitas. Building of Informatics, Technology and Science (BITS), 6(2), 1011-1019. https://doi.org/10.47065/bits.v6i2.5723
Section
Articles