Implementasi Long Short Term Memory (LSTM) dalam Deteksi Kantuk pada Pengemudi Menggunakan Sensor Detak Jantung
Abstract
Traffic accidents are often caused by drowsiness or negligent sleep, as well the use of alcohol or drugs. Microsleep, which is drowsiness or falling asleep within a few seconds without the driver realizing it, is a dangerous condition that can lead to death while driving. This research aims to implement the Long Short Term Memory (LSTM) algorithm as an early warning of microlsleep in drivers and develop a drowsiness detection tool using a pulse heart rate sensor. LSTM, with its ability to memory long-range information, has proven to be superior in time series prediction and is applied in real-time driver heart rate data analysis. The results show that the implemented LSTM model has good performance in detecting drowsiness, with MAE values of 6.42 in training data and 6.35 in testing data. RMSE of 8.82 for training and 8.33 for testing. MAPE of 8.87% in training data and 8.97% in testing data, and MSE of 77.80 in training data and 69.47 in testing. Thus, the LSTM algorithm is effective in detecting drowsiness in drivers through heart rate data analysis, which can serve as an early warning system to prevent traffic accidents caused by microsleep.
Downloads
References
Kementerian Perhubungan Republik Indonesia, “Tekan Angka Kecelakaan Lalu Lintas, Kemenhub Ajak Masyarakat Beralih ke Transportasi Umum dan Utamakan Keselamatan Berkendara”, [Online]. Available: https://dephub.go.id/post/read/tekan-angka-kecelakaan-lalu-lintas,-kemenhub-ajak-masyarakat-beralih-ke-transportasi-umum-dan-utamakan-keselamatan-berkendara, tanggal akses 20 July 2024
S. Saleem, “Risk assessment of road traffic accidents related to sleepiness during driving: a systematic review,” East. Mediterr. Heal. J., vol. 28, no. 9, pp. 695–700, 2022, doi: 10.26719/emhj.22.055.
R. Rahmadiyani and A. widyanti, “Prevalence of drowsy driving and modeling its intention: An Indonesian case study,” Transp. Res. Interdiscip. Perspect., vol. 19, no. May, p. 100824, 2023, doi: 10.1016/j.trip.2023.100824.
C. Aj. Saputra, D. Erwanto, and P. N. Rahayu, “Deteksi Kantuk Pengendara Roda Empat Menggunakan Haar Cascade Classifier Dan Convolutional Neural Network,” JEECOM J. Electr. Eng. Comput., vol. 3, no. 1, pp. 1–7, 2021, doi: 10.33650/jeecom.v3i1.1510.
Khan Salman, Mukhtar Husnaeni, and Pramudita Brahmantya, “Perancangan Sistem Pendeteksi Microsleep Untuk Peringatan Kelelahan Pada Pengemudi Kendaraan,” E-Proceding Eng., vol. 9, no. 4, p. 1810, 2022.
Y. Y. Haijun Lin, Sirao Zhang, Qinghao Li, Ya Li, Jianmin Li, “A new method for heart rate prediction based on LSTM-BiLSTM-Att,” J. Int. Meas. Confed., vol. Volume 207, 2023, doi: https://doi.org/10.1016/j.measurement.2022.112384.
K. D. Prasetyo, R. Wijaya, and G. S. Wulandari, “Comparative Analysis of ARIMA and LSTM Models for Predicting Physical Fatigue in Bandung Workers,” J. Media Inform. Budidarma, vol. 8, pp. 528–536, 2024, doi: 10.30865/mib.v8i1.7282.
A. F. A. Zen, E. S. Pramukantoro, K. Amron, V. Wardhani, and P. A. Kamila, “Prediksi Detak Jantung Berbasis LSTM pada Raspberry Pi untuk Pemantauan Kesehatan Portabel,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 7, pp. 1555–1562, 2023, doi: 10.25126/jtiik.1078015.
P. Madona and A. L. Tobing, “Early Detection of Microsleep in Motorcycle Helmet Based on Pulse Sensor,” J. Electron. Technol. Explor., vol. 1, no. 2, pp. 45–52, 2023, doi: 10.52465/joetex.v1i2.228.
Y. Irawan, Y. Fernando, and R. Wahyuni, “Detecting Heart Rate Using Pulse Sensor As Alternative Knowing Heart Condition,” J. Appl. Eng. Technol. Sci., vol. 1, no. 1, pp. 30–42, 2019, doi: 10.37385/jaets.v1i1.16.
T. Arakawa, “A review of heartbeat detection systems for automotive applications,” Sensors, vol. 21, no. 18, 2021, doi: 10.3390/s21186112.
S. H. Jo, J. M. Kim, and D. K. Kim, “Heart rate change while drowsy driving,” J. Korean Med. Sci., vol. 34, no. 8, pp. 8–12, 2019, doi: 10.3346/jkms.2019.34.e56.
L. Wiranda and M. Sadikin, “Penerapan Long Short Term Memory pada Data Time Series untuk Memprediksi Penjualan Produk PT. Metiska Farma,” J. Nas. Pendidik. Tek. Inform., vol. 8, no. 3, pp. 184–196, 2019.
J. Cahyani, S. Mujahidin, and T. P. Fiqar, “Implementasi Metode Long Short Term Memory (LSTM) untuk Memprediksi Harga Bahan Pokok Nasional,” J. Sist. dan Teknol. Inf., vol. 11, no. 2, p. 346, 2023, doi: 10.26418/justin.v11i2.57395.
N. N. D. Ardriani, J. A. Y. Yastawil, K. N. Erawati, I. G. M. Yudi Antara, and G. A. Santiago, “Multivariat Predict Sales Data Using the Recurrent Neural Network (RNN) Method,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 18, no. 1, p. 83, 2024, doi: 10.22146/ijccs.90165.
B. A. H. Kholifatullah and A. Prihanto, “Penerapan Metode Long Short Term Memory Untuk Klasifikasi Pada Hate Speech,” J. Informatics Comput. Sci., vol. 04, pp. 292–297, 2023, doi: 10.26740/jinacs.v4n03.p292-297.
T. Bastian Sianturi, I. Cholissodin, and N. Yudistira, “Penerapan Algoritma Long Short-Term Memory (LSTM) berbasis Multi Fungsi Aktivasi Terbobot dalam Prediksi Harga Ethereum,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 3, pp. 1101–1107, 2023, [Online]. Available: http://j-ptiik.ub.ac.id
D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, pp. 1–24, 2021, doi: 10.7717/PEERJ-CS.623.
R. B. Radite Putra and H. Hendry, “Multivariate Time Series Forecasting pada Penjualan Barang Retail dengan Recurrent Neural Network,” INOVTEK Polbeng - Seri Inform., vol. 7, no. 1, p. 71, 2022, doi: 10.35314/isi.v7i1.2398.
Khalis Sofi, Aswan Supriyadi Sunge, Sasmitoh Rahmad Riady, and Antika Zahrotul Kamalia, “Perbandingan Algoritma Linear Regression, Lstm, Dan Gru Dalam Memprediksi Harga Saham Dengan Model Time Series,” Seminastika, vol. 3, no. 1, pp. 39–46, 2021, doi: 10.47002/seminastika.v3i1.275.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi Long Short Term Memory (LSTM) dalam Deteksi Kantuk pada Pengemudi Menggunakan Sensor Detak Jantung
Pages: 1120-1129
Copyright (c) 2024 Ade Silvia, Inas Afifah, Suroso Suroso
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).