Analisis Sentimen Ulasan Aplikasi Instagram di Google Play Store: Pendekatan Multinomial Naive Bayes dan Berbasis Leksikon

Indonesia


  • Novresia Wijaya * Mail Universitas Mikroskil, Indonesia
  • Erwin Setiawan Panjaitan Universitas Mikroskil, Indonesia
  • (*) Corresponding Author
Keywords: sentimen analysis; analysis sentiment; lexicon-based; multinomial naive bayes; naive bayes; google play store; instagram

Abstract

Social media platforms like Instagram play a significant role in the daily lives of many individuals. To understand user experiences with social media, we can read reviews and ratings provided by users. However, these ratings often may not accurately reflect the content of their reviews. Therefore, it is important to analyze these responses to understand the common complaints users have. This study aims to develop an accurate sentiment analysis method for Instagram user reviews by combining Naïve Bayes with a lexicon-based approach to address the discrepancy between star ratings and the content of reviews. The main issue addressed is how to accurately analyze Instagram user sentiment, given the potential discrepancies. To tackle this problem, the study employs a Naïve Bayes method combined with a lexicon-based approach to determine positive and negative sentiments towards user reviews. The testing results show an accuracy of 92%, with a precision of 84%, recall of 91%, and an F1-Score of 87%.

Downloads

Download data is not yet available.

References

K. J. Syahrina, N. Siregar and N. Harahap, "PENELITIAN TENTANG INSTAGRAM," Maktabun: Jurnal Perpustakaan dan Informasi, pp. 20 - 26, 2022.

C. M. Annur, "Indonesia Jadi Negara dengan Pengguna Instagram Terbanyak ke-4 di Dunia," Databoks, 28 11 2023. [Online]. Available: https://databoks.katadata.co.id/datapublish/2023/11/28/indonesia-jadi-negara-dengan-pengguna-instagram-terbanyak-ke-4-di-dunia. [Accessed 21 april 2024].

N. Julius, "Data Jumlah Pengguna Instagram di Indonesia 2024," Upgraded, 14 06 2024. [Online]. Available: https://upgraded.id/data-jumlah-pengguna-instagram-di-indonesia. [Accessed 18 06 2024].

J. Callaham, "From Android Market to Google Play: a history of the Play Store," Android Authority, 2017 03 2017. [Online]. Available: https://www.androidauthority.com/android-market-google-play-history-754989/. [Accessed 12 05 2024].

S. Sadiq, M. Umer, S. Ullah, S. Mirjalili, V. Rupapara and M. Nappi, "Discrepancy Detection between Actual User Reviews and Numeric Ratings of Google App Store using Deep Learning," Expert Systems with Applications, vol. 181, pp. 1-11, 2021.

Y. Asri, W. N. Suliyanti, D. Kuswardani and M. Fajri, "Pelabelan Otomatis Lexicon Vader dan Klasifikasi Naive Bayes dalam menganalisis sentimen data ulasan PLN Mobile," PETIR: Jurnal Pengkajian dan Penerapan Teknik Informatika, vol. 15, no. 2, pp. 264-275, 2022.

D. S. Sayogo, B. Irawan and A. Bahtiar, "ANALISIS SENTIMEN ULASAN INSTAGRAM DI GOOGLE PLAY STORE MENGGUNAKAN ALGORITMA NAÏVE BAYES," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 6, pp. 3314-3319, 2023.

T. Widiyaningtyas, I. A. Zaeni and R. A. Farisi, "Sentiment Analysis Of Hotel Review Using N-Gram And Naive Bayes Methods," in 2019 Fourth International Conference on Informatics and Computing (ICIC), Semarang, 2019.

R. B. Trianto, A. Triyono and D. M. P. Arum, "Klasifikasi Rating Otomatis pada Dokumen Teks Ulasan Produk Elektronik Menggunakan Metode N-gram dan Naïve Bayes," Jurnal Informatika Universitas Pamulang , vol. 5, no. 3, pp. 295-301, 2020.

L. A. Sari, N. F. Ramadhita and F. N. Hasan, "ANALYSIS OF PUBLIC SENTIMENT ON GOOGLE PLAY STORE TIJE APPLICATION USERS USING NAÏVE BAYES CLASSIFIER METHOD," Jurnal Teknik Informatika (JUTIF), vol. 5, no. 1, pp. 243-251, 2024.

A. Sunjaya, N. Wijaya, N. P. Wong, S.KOM., M.T.I and S. Winardi, S.KOM., M.T.I, "Implementation of Sentiment Analysis of Shopee E-Commerce Reviews using Naïve Bayes, N-Gram, and Information Gain," in 2023 Eighth International Conference on Informatics and Computing (ICIC) (2023), Malang, 2023.

A. Bayhaqy, K. Nainggolan, S. Sfrenrianto and E. R. Kaburuan, "Sentiment Analysis about E-Commerce from Tweets Using Decision Tree, K-Nearest Neighbor, and Naïve Bayes," 2012.

D. Abimanyu, E. Budianita, E. P. Cynthia, F. Yanto and Y. , "Analisis Sentimen Akun Twitter Apex Legends Menggunakan VADER," Jurnal Nasional Komputasi dan Teknologi Informasi, vol. 5, no. 3, pp. 423-431, 2022.

D. D. Suhartono,S.Kom., M.T.I, "N-Gram," BINA NUSANTARA : sCHOOL OF COMPUTER SCIENCE, 19 12 2019. [Online]. Available: https://socs.binus.ac.id/2019/12/31/n-gram/. [Accessed 01 03 2024].

D. Septiani and I. Isabela, "ANALISIS TERM FREQUENCY INVERSE DOCUMENT FREQUENCY (TF-IDF) DALAM TEMU KEMBALI INFORMASI PADA DOKUMEN TEKS," SINTESIA: Jurnal Sistem dan Teknologi Informasi Indonesia, vol. 1, no. 2, pp. 81-88, 2022.

E. Indarbensyah and N. Rochamawati, "Penerapan N-gram Menggunakan Algoritma Random Forest dan Naives Bayes Classifier pada Analisis Sentimen Kebijakan PPKM 2021," JINACS: Journal of Informatics and Computer Science, vol. 2, no. 4, pp. 235-244, 2021.

I. E. Tiffani, "Optimization of Naïve Bayes Classifier By Implemented Unigram, Bigram, Trigram for Sentiment Analysis of Hotel Review," JOSCEK : Journal of Soft Computing Exploration, vol. 1, no. 1, pp. 1-7, 2020.

D. H. Kalokasari, D. M. Shofi and A. H. Setyaning, "IMPLEMENTASI ALGORITMA MULTINOMIAL NAIVE BAYES CLASSIFIER PADA SISTEM KLASIFIKASI SURAT KELUAR (Studi Kasus : DISKOMINFO Kabupaten Tangerang)," JURNAL TEKNIK INFORMATIKA, vol. 10, no. 2, pp. 109-118, 2017.

M. Abbas, K. A. Memon, A. A. Jamali, S. Memon and A. Ahmed, "Multinomial Naive Bayes Classification Model for Sentiment Analysis," IJCSNS International Journal of Computer Science and Network Security, vol. 19, no. 3, pp. 62-67, 2019.

E. H. Muktafin, K. and E. T. Luthfi, "Analisis Sentimen pada Ulasan Pembelian Produk di Marketplace Shopee Menggunakan Pendekatan Natural Language Processing," Jurnal Eksplora Informatika, vol. 10, no. 1, pp. 32-42, 2020.

U. Rahardja, T. Hariguna and W. M. Baihaqi, "Opinion mining on e-commerce data using sentiment analysis and k-medoid clustering," in Proceedings - 2019 12th International Conference on Ubi-Media Computing, Ubi-Media 2019, 2019.

B. Hakim, "Analisa Sentimen Data Text Preprocessing Pada Data Mining Dengan Menggunakan Machine Learning," JBASE - Journal of Business and Audit Information Systems, vol. 4, no. 2, 2021.

L. Ardiani, H. Sujaini and T. , "Implementasi Sentiment Analysis Tanggapan Masyarakat Terhadap Pembangunan di Kota Pontianak," Jurnal Sistem dan Teknologi Informasi (Justin), vol. 8, no. 2, p. 183, 2020.

P. A. Sumitro, R. D. I. Mulyana and W. Saputro, "Analisis Sentimen Terhadapat Vaksin Covid-19 di Indonesia pada Twitter Menggunakan Metode Lexicon Based," Jurnal Informatika dan Teknologi Komputer, pp. 50-57, 2021.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Ulasan Aplikasi Instagram di Google Play Store: Pendekatan Multinomial Naive Bayes dan Berbasis Leksikon

Dimensions Badge
Article History
Submitted: 2024-07-17
Published: 2024-09-09
Abstract View: 29 times
PDF Download: 26 times
How to Cite
Wijaya, N., & Panjaitan, E. (2024). Analisis Sentimen Ulasan Aplikasi Instagram di Google Play Store: Pendekatan Multinomial Naive Bayes dan Berbasis Leksikon. Building of Informatics, Technology and Science (BITS), 6(2), 921-929. https://doi.org/10.47065/bits.v6i2.5615
Section
Articles