Implementasi Algoritma Gaussian Naïve Bayes Dalam Klasifikasi Status Gizi Pada Balita
Abstract
Nutritional status is a condition related to nutrition that can be measured and results from the balance between the body's nutritional needs and nutrient intake from food. In Indonesia, nutritional problems such as malnutrition and other nutritional issues are still prevalent. In this context, the use of machine learning (ML) and data mining (DM) techniques and tools can be very helpful in tackling challenges in the manufacturing sector. Therefore, this study will use the Naïve Bayes Classifier algorithm with a Gaussian model. The data used is the nutritional status data of toddlers from January to July 2023 in Samarinda City. The attributes in this study include Gender, Birth Weight, Birth Height, Age at Measurement, Body Weight, Body Height, ZS BW/A, BW/A, ZS BH/A, and BH/A. The determination of toddlers' nutritional status in this study is based on the BW/BH index, which consists of 6 classes: severe malnutrition, undernutrition, good nutrition, risk of overnutrition, overnutrition, and obesity. From the study conducted, it was found that the Naïve Bayes Classifier algorithm with the Gaussian model can accurately classify toddlers' nutritional status. From the data processing performed, it was found that the accuracy value of the Gaussian model is 81.85%.
Downloads
References
N. Rismayanti, A. Naswin, U. Zaky, M. Zakariyah, and D. A. Purnamasari, ‘Evaluating Thresholding-Based Segmentation and Humoment Feature Extraction in Acute Lymphoblastic Leukemia Classification using Gaussian Naive Bayes’, Int. J. Artif. Intell. Med. Issues, vol. 1, no. 2, pp. 74–83, 2023, doi: 10.56705/ijaimi.v1i2.99.
M. Nesca, A. Katz, C. K. Leung, and L. M. Lix, ‘A scoping review of preprocessing methods for unstructured text data to assess data quality’, Int. J. Popul. Data Sci., vol. 7, no. 1, pp. 1–15, 2022, doi: 10.23889/ijpds.v7i1.1757.
O. S. Ads, M. M. Alfares, and M. A. M. Salem, ‘Multi-limb Split Learning for Tumor Classification on Vertically Distributed Data’, Proc. - 2021 IEEE 10th Int. Conf. Intell. Comput. Inf. Syst. ICICIS 2021, pp. 88–92, 2021, doi: 10.1109/ICICIS52592.2021.9694163.
C. Fan, M. Chen, X. Wang, J. Wang, and B. Huang, ‘A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data’, Front. Energy Res., vol. 9, no. March, pp. 1–17, 2021, doi: 10.3389/fenrg.2021.652801.
S. A. N. Alexandropoulos, S. B. Kotsiantis, and M. N. Vrahatis, Data preprocessing in predictive data mining, vol. 34, no. January. 2019. doi: 10.1017/S026988891800036X.
D. Jeevaraj, B. Karthik, T. Vijayan, and M. Sriram, ‘Feature Selection Model using Naive Bayes ML Algorithm for WSN Intrusion Detection System 179 Original Scientific Paper’, Int. J. Electr. Comput. Eng. Syst., vol. 14, no. November 2, pp. 179–185, 2023.
C. K. Tan, C. P. Tan, and N. Shaun Wes, Information Technology Students’ Preferences on Blended Learning, vol. 724. 2021. doi: 10.1007/978-981-33-4069-5_9.
F. D. Pratama, I. Zufria, and T. Triase, ‘Implementasi Data Mining Menggunakan Algoritma Naïve Bayes Untuk Klasifikasi Penerima Program Indonesia Pintar’, Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 7, no. 1, pp. 77–84, 2022, doi: 10.36341/rabit.v7i1.2217.
Nugroho Arif Sudibyo, Ardymulya Iswardani, Kartika Sari, and Siti Suprihatiningsih, ‘Penerapan Data Mining Pada Jumlah Penduduk Miskin Di Indonesia’, J. Lebesgue J. Ilm. Pendidik. Mat. Mat. dan Stat., vol. 1, no. 3, pp. 199–207, 2020, doi: 10.46306/lb.v1i3.42.
G. Gusnedi et al., ‘Risk factors associated with childhood stunting in Indonesia: A systematic review and meta-analysis’, Asia Pac. J. Clin. Nutr., vol. 32, no. 2, pp. 184–195, 2023, doi: 10.6133/apjcn.202306_32(2).0001.
M. Abbas, K. Ali, A. Jamali, K. Ali Memon, and A. Aleem Jamali, ‘Multinomial Naive Bayes Classification Model for Sentiment Analysis’, IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 19, no. 3, pp. 62–67, 2019, doi: 10.13140/RG.2.2.30021.40169.
R. Nailuvar and I. Laily Hilmi, ‘Analysis of Factors Affecting Stuting Incidence in Indonesia : Literature riview’, J. eduhealth, vol. 13, no. 02, p. 1099, 2022, [Online]. Available: http://ejournal.seaninstitute.or.id/index.php/healt
S. Zaleha and H. Idris, ‘Implementation of Stunting Program in Indonesia: a Narrative Review’, Indones. J. Heal. Adm., vol. 10, no. 1, pp. 143–151, 2022, doi: 10.20473/jaki.v10i1.2022.143-151.
D. Simbolon, Asmawati, B. Battbual, I. D. R. Ludji, and Eliana, ‘Pendampingan Gizi Spesifik Pada Ibu Hamil Upaya Menuju Kampung KB Bebas Stunting’, Edukasi Masy. Sehat Sejah. J. Pengabdi. Kpd. Masy., vol. 3, no. 2, pp. 112–121, 2021.
Harliana and D. Anggraini, ‘Penerapan Algoritma Naïve Bayes Pada Klasifikasi Status Gizi Balita di Posyandu Desa Kalitengah’, J. Inform. Komputer, Bisnis dan Manaj., vol. 21, no. 2, pp. 38–45, 2023, doi: 10.61805/fahma.v21i2.16.
E. Bukhari, ‘Pengaruh Dana Desa dalam Mengentaskan Kemiskinan Penduduk Desa’, J. Kaji. Ilm., vol. 21, no. 2, pp. 219–228, 2021, doi: 10.31599/jki.v21i2.540.
N. Nurainun, E. Haerani, F. Syafria, and L. Oktavia, ‘Penerapan Algoritma Naïve Bayes Classifier Dalam Klasifikasi Status Gizi Balita dengan Pengujian K-Fold Cross Validation’, J. Comput. Syst. Informatics, vol. 4, no. 3, pp. 578–586, 2023, doi: 10.47065/josyc.v4i3.3414.
UNICEF, ‘Mengatasi tiga beban malnutrisi di Indonesia’, unicef, 2023. https://www.unicef.org/indonesia/id/gizi?gad_source=1&gclid=Cj0KCQjwsuSzBhCLARIsAIcdLm4VJrL8AgOdYCjtDtyE9qcXJsHdHkBNFevVNAxGy7QWz0rza7aQD_oaAte6EALw_wcB (accessed Jun. 26, 2024).
R. Nurida, E. Sugiharti, and A. Alamsyah, ‘Implementation of Fuzzy K-Nearest Neighbor Method in Decision Support System for Identification of Under-five Children Nutritional Status Based on Anthropometry Index’, J. Adv. Inf. Syst. Technol., vol. 1, no. 1, pp. 83–89, 2019.
R. R. R. Arisandi, B. Warsito, and A. R. Hakim, ‘Aplikasi Naïve Bayes Classifier (Nbc) Pada Klasifikasi Status Gizi Balita Stunting Dengan Pengujian K-Fold Cross Validation’, J. Gaussian, vol. 11, no. 1, pp. 130–139, 2022, doi: 10.14710/j.gauss.v11i1.33991.
kemenkes, Hasil Studi Status Gizi Indonesia (SSGI) Tingkat Nasional, Provinsi, dan Kabupaten/Kota Tahun 2021. Kementerian Kesehatan Republik Indonesia, 2021. [Online]. Available: https://www.badankebijakan.kemkes.go.id/buku-saku-hasil-studi-status-gizi-indonesia-ssgi-tahun-2021/
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi Algoritma Gaussian Naïve Bayes Dalam Klasifikasi Status Gizi Pada Balita
Pages: 627-635
Copyright (c) 2024 Hery Kurniawan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).