Implementasi Algoritma Gaussian Naïve Bayes Dalam Klasifikasi Status Gizi Pada Balita


  • Hery Kurniawan UMKT, Indonesia
  • Abdul Rahim * Mail Universitas Muhammadiyah Kalimantan Timur, Indonesia
  • Taghfirul Azhima Yoga Siswa Universitas Muhammadiyah Kalimantan Timur, Indonesia
  • (*) Corresponding Author
Keywords: Nurtritional Status; Naïve Bayes Algorithm; Gaussian; Accuracy

Abstract

Nutritional status is a condition related to nutrition that can be measured and results from the balance between the body's nutritional needs and nutrient intake from food. In Indonesia, nutritional problems such as malnutrition and other nutritional issues are still prevalent. In this context, the use of machine learning (ML) and data mining (DM) techniques and tools can be very helpful in tackling challenges in the manufacturing sector. Therefore, this study will use the Naïve Bayes Classifier algorithm with a Gaussian model. The data used is the nutritional status data of toddlers from January to July 2023 in Samarinda City. The attributes in this study include Gender, Birth Weight, Birth Height, Age at Measurement, Body Weight, Body Height, ZS BW/A, BW/A, ZS BH/A, and BH/A. The determination of toddlers' nutritional status in this study is based on the BW/BH index, which consists of 6 classes: severe malnutrition, undernutrition, good nutrition, risk of overnutrition, overnutrition, and obesity. From the study conducted, it was found that the Naïve Bayes Classifier algorithm with the Gaussian model can accurately classify toddlers' nutritional status. From the data processing performed, it was found that the accuracy value of the Gaussian model is 81.85%.

Downloads

Download data is not yet available.

References

N. Rismayanti, A. Naswin, U. Zaky, M. Zakariyah, and D. A. Purnamasari, ‘Evaluating Thresholding-Based Segmentation and Humoment Feature Extraction in Acute Lymphoblastic Leukemia Classification using Gaussian Naive Bayes’, Int. J. Artif. Intell. Med. Issues, vol. 1, no. 2, pp. 74–83, 2023, doi: 10.56705/ijaimi.v1i2.99.

M. Nesca, A. Katz, C. K. Leung, and L. M. Lix, ‘A scoping review of preprocessing methods for unstructured text data to assess data quality’, Int. J. Popul. Data Sci., vol. 7, no. 1, pp. 1–15, 2022, doi: 10.23889/ijpds.v7i1.1757.

O. S. Ads, M. M. Alfares, and M. A. M. Salem, ‘Multi-limb Split Learning for Tumor Classification on Vertically Distributed Data’, Proc. - 2021 IEEE 10th Int. Conf. Intell. Comput. Inf. Syst. ICICIS 2021, pp. 88–92, 2021, doi: 10.1109/ICICIS52592.2021.9694163.

C. Fan, M. Chen, X. Wang, J. Wang, and B. Huang, ‘A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data’, Front. Energy Res., vol. 9, no. March, pp. 1–17, 2021, doi: 10.3389/fenrg.2021.652801.

S. A. N. Alexandropoulos, S. B. Kotsiantis, and M. N. Vrahatis, Data preprocessing in predictive data mining, vol. 34, no. January. 2019. doi: 10.1017/S026988891800036X.

D. Jeevaraj, B. Karthik, T. Vijayan, and M. Sriram, ‘Feature Selection Model using Naive Bayes ML Algorithm for WSN Intrusion Detection System 179 Original Scientific Paper’, Int. J. Electr. Comput. Eng. Syst., vol. 14, no. November 2, pp. 179–185, 2023.

C. K. Tan, C. P. Tan, and N. Shaun Wes, Information Technology Students’ Preferences on Blended Learning, vol. 724. 2021. doi: 10.1007/978-981-33-4069-5_9.

F. D. Pratama, I. Zufria, and T. Triase, ‘Implementasi Data Mining Menggunakan Algoritma Naïve Bayes Untuk Klasifikasi Penerima Program Indonesia Pintar’, Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 7, no. 1, pp. 77–84, 2022, doi: 10.36341/rabit.v7i1.2217.

Nugroho Arif Sudibyo, Ardymulya Iswardani, Kartika Sari, and Siti Suprihatiningsih, ‘Penerapan Data Mining Pada Jumlah Penduduk Miskin Di Indonesia’, J. Lebesgue J. Ilm. Pendidik. Mat. Mat. dan Stat., vol. 1, no. 3, pp. 199–207, 2020, doi: 10.46306/lb.v1i3.42.

G. Gusnedi et al., ‘Risk factors associated with childhood stunting in Indonesia: A systematic review and meta-analysis’, Asia Pac. J. Clin. Nutr., vol. 32, no. 2, pp. 184–195, 2023, doi: 10.6133/apjcn.202306_32(2).0001.

M. Abbas, K. Ali, A. Jamali, K. Ali Memon, and A. Aleem Jamali, ‘Multinomial Naive Bayes Classification Model for Sentiment Analysis’, IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 19, no. 3, pp. 62–67, 2019, doi: 10.13140/RG.2.2.30021.40169.

R. Nailuvar and I. Laily Hilmi, ‘Analysis of Factors Affecting Stuting Incidence in Indonesia : Literature riview’, J. eduhealth, vol. 13, no. 02, p. 1099, 2022, [Online]. Available: http://ejournal.seaninstitute.or.id/index.php/healt

S. Zaleha and H. Idris, ‘Implementation of Stunting Program in Indonesia: a Narrative Review’, Indones. J. Heal. Adm., vol. 10, no. 1, pp. 143–151, 2022, doi: 10.20473/jaki.v10i1.2022.143-151.

D. Simbolon, Asmawati, B. Battbual, I. D. R. Ludji, and Eliana, ‘Pendampingan Gizi Spesifik Pada Ibu Hamil Upaya Menuju Kampung KB Bebas Stunting’, Edukasi Masy. Sehat Sejah. J. Pengabdi. Kpd. Masy., vol. 3, no. 2, pp. 112–121, 2021.

Harliana and D. Anggraini, ‘Penerapan Algoritma Naïve Bayes Pada Klasifikasi Status Gizi Balita di Posyandu Desa Kalitengah’, J. Inform. Komputer, Bisnis dan Manaj., vol. 21, no. 2, pp. 38–45, 2023, doi: 10.61805/fahma.v21i2.16.

E. Bukhari, ‘Pengaruh Dana Desa dalam Mengentaskan Kemiskinan Penduduk Desa’, J. Kaji. Ilm., vol. 21, no. 2, pp. 219–228, 2021, doi: 10.31599/jki.v21i2.540.

N. Nurainun, E. Haerani, F. Syafria, and L. Oktavia, ‘Penerapan Algoritma Naïve Bayes Classifier Dalam Klasifikasi Status Gizi Balita dengan Pengujian K-Fold Cross Validation’, J. Comput. Syst. Informatics, vol. 4, no. 3, pp. 578–586, 2023, doi: 10.47065/josyc.v4i3.3414.

UNICEF, ‘Mengatasi tiga beban malnutrisi di Indonesia’, unicef, 2023. https://www.unicef.org/indonesia/id/gizi?gad_source=1&gclid=Cj0KCQjwsuSzBhCLARIsAIcdLm4VJrL8AgOdYCjtDtyE9qcXJsHdHkBNFevVNAxGy7QWz0rza7aQD_oaAte6EALw_wcB (accessed Jun. 26, 2024).

R. Nurida, E. Sugiharti, and A. Alamsyah, ‘Implementation of Fuzzy K-Nearest Neighbor Method in Decision Support System for Identification of Under-five Children Nutritional Status Based on Anthropometry Index’, J. Adv. Inf. Syst. Technol., vol. 1, no. 1, pp. 83–89, 2019.

R. R. R. Arisandi, B. Warsito, and A. R. Hakim, ‘Aplikasi Naïve Bayes Classifier (Nbc) Pada Klasifikasi Status Gizi Balita Stunting Dengan Pengujian K-Fold Cross Validation’, J. Gaussian, vol. 11, no. 1, pp. 130–139, 2022, doi: 10.14710/j.gauss.v11i1.33991.

kemenkes, Hasil Studi Status Gizi Indonesia (SSGI) Tingkat Nasional, Provinsi, dan Kabupaten/Kota Tahun 2021. Kementerian Kesehatan Republik Indonesia, 2021. [Online]. Available: https://www.badankebijakan.kemkes.go.id/buku-saku-hasil-studi-status-gizi-indonesia-ssgi-tahun-2021/


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Algoritma Gaussian Naïve Bayes Dalam Klasifikasi Status Gizi Pada Balita

Dimensions Badge
Article History
Submitted: 2024-07-05
Published: 2024-09-07
Abstract View: 63 times
PDF Download: 59 times
How to Cite
Kurniawan, H., Rahim, A., & Siswa, T. (2024). Implementasi Algoritma Gaussian Naïve Bayes Dalam Klasifikasi Status Gizi Pada Balita. Building of Informatics, Technology and Science (BITS), 6(2), 627-635. https://doi.org/10.47065/bits.v6i2.5493
Section
Articles