Optimizing Quantum Neural Networks for Predicting the Effectiveness of Drug Compounds as Corrosion Inhibitors


  • Lubna Mawaddah Universitas Dian Nuswantoro, Semarang, Indonesia
  • Muhammad Reesa Rosyid Universitas Dian Nuswantoro, Semarang, Indonesia
  • Akbar Priyo Santosa Universitas Dian Nuswantoro, Semarang, Indonesia
  • Muhamad Akrom * Mail Universitas Dian Nuswantoro, Semarang, Indonesia
  • (*) Corresponding Author
Keywords: Corrosion Inhibitor; Drug Compounds; Quantum Circuit; Quantum Machine Learning; Quantum Neural Network

Abstract

Corrosion, caused by electrochemical reactions in corrosive environments, can degrade the quality and lifespan of materials, potentially leading to significant losses in various industrial sectors. One common strategy to reduce corrosion rates is by using corrosion inhibitors. A significant challenge in this field is the time-consuming and costly process of testing new corrosion inhibitors in the laboratory. Consequently, there is a need for more efficient and cost-effective methods to predict the effectiveness of potential corrosion inhibitors using machine learning techniques. This research addresses this problem by applying a quantum machine learning (QML) approach with quantum neural network (QNN) algorithms to evaluate the effectiveness of drug compounds as corrosion inhibitors. The study aims to optimize QNN models by investigating three different quantum circuit configurations to identify the most effective design. The results showed that Model-01, consisting of three layers, demonstrated the best performance with an MSE of 38.81, an RMSE of 6.23, and an MAE of 6.19, along with the shortest training time of 32 seconds, indicating an optimal balance between complexity and generalizability. Overall, this QML approach provides new insights into the predictive ability of QNN models in assessing the effectiveness of drug compounds as corrosion inhibitors, demonstrating the potential of quantum computing to enhance predictive accuracy and efficiency in investigating anti-corrosion materials

Downloads

Download data is not yet available.

References

T. Sutojo, S. Rustad, M. Akrom, A. Syukur, G. F. Shidik, and H. K. Dipojono, “A machine learning approach for corrosion small datasets”, Npj Mater Degrad, vol. 7, no. 1, Dec. 2023, doi: 10.1038/s41529-023-00336-7.

M. Akrom, “Investigation Of Natural Extracts As Green Corrosion Inhibitors In Steel Using Density Functional Theory”, J. Teori Apl. Fis, vol. 10, no. 1, pp. 89–102, Jan. 2022, doi: 10.23960/jtaf.v10i1.2927.

M. Akrom, “DFT Investigation of Syzygium Aromaticum and Nicotiana Tabacum Extracts as Corrosion Inhibitor”, Science Tech, vol. 8, no. 1, pp. 42–48, Feb. 2022, doi: 10.30738/st.vol8.no1.a11775.

S. Budi, M. Akrom, G.A. Trisnapradika, T. Sutojo, W.A.E. Prabowo, “Optimization of Polynomial Functions on the NuSVR Algorithm Based on Machine Learning: Case Studies on Regression Datasets”, Scientific Journal of Informatics, vol. 10, no. 2, May. 2023, doi: 10.15294/sji.v10i2.43929.

M. Akrom, S. Rustad, A. G. Saputro, and H. K. Dipojono, “Data-driven investigation to model the corrosion inhibition efficiency of Pyrimidine-Pyrazole hybrid corrosion inhibitors”, Comput Theor Chem, vol. 1229, p. 114307, Nov. 2023, doi: 10.1016/J.COMPTC.2023.114307.

M. Akrom and T. Sutojo, “Investigation of QSPR-Based Machine Learning Models in Pyrimidine Corrosion Inhibitors”, Eksergi, vol. 20, no. 2, Art. no. 2, Jul. 2023, doi: 10.31315/e.v20i2.9864.

M. Akrom, S. Rustad, A. G. Saputro, A. Ramelan, F. Fathurrahman, and H. K. Dipojono, “A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds”, Mater Today Commun, vol. 35, Jun. 2023, doi: 10.1016/j.mtcomm.2023.106402.

T. W. Quadri et al., “Computational insights into quinoxaline-based corrosion inhibitors of steel in HCl: Quantum chemical analysis and QSPR-ANN studies”, Arabian Journal of Chemistry, vol. 15, no. 7, Jul. 2022, doi: 10.1016/j.arabjc.2022.103870.

B. El Ibrahimi et al., “Theoretical evaluation of some α-amino acids for corrosion inhibition of copper in acidic medium: DFT calculations, Monte Carlo simulations and QSPR studies”, J King Saud Univ Sci, vol. 32, no. 1, pp. 163–171, Jan. 2020, doi: 10.1016/j.jksus.2018.04.004.

C. Beltran-Perez et al., “A General Use QSAR-ARX Model to Predict the Corrosion Inhibition Efficiency of Drugs in Terms of Quantum Mechanical Descriptors and Experimental Comparison for Lidocaine”, Int J Mol Sci, vol. 23, no. 9, May. 2022, doi: 10.3390/ijms23095086.

C. T. Ser, P. Žuvela, and M. W. Wong, “Prediction of corrosion inhibition efficiency of pyridines and quinolines on an iron surface using machine learning-powered quantitative structure-property relationships”, Appl Surf Sci, vol. 512, May. 2020, doi: 10.1016/j.apsusc.2020.145612.

A. H. Alamri and N. Alhazmi, “Development of data driven machine learning models for the prediction and design of pyrimidine corrosion inhibitors”, Journal of Saudi Chemical Society, vol. 26, no. 6, Nov. 2022, doi: 10.1016/j.jscs.2022.101536.

T. W. Quadri Et Al., “Development of QSAR-based (MLR/ANN) predictive models for effective design of pyridazine corrosion inhibitors”, Materials Today Communications, vol. 30, Mar. 2022, doi: 10.1016/j.mtcomm.2022.103163.

T. H. Pham, P. K. Le, and D. N. Son, “A data-driven QSPR model for screening organic corrosion inhibitors for carbon steel using machine learning techniques”, RSC Adv, vol. 14, no. 16, pp. 11157–11168, Apr. 2024, doi: 10.1039/d4ra02159b.

A. Macaluso, L. Clissa, S. Lodi, and C. Sartori, “A variational algorithm for quantum neural networks”, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Science and Business Media Deutschland GmbH, vol. 12142, pp. 591–604, 2020, doi: 10.1007/978-3-030-50433-5_45.

M. Lubasch, J. Joo, P. Moinier, M. Kiffner, and D. Jaksch, “Variational quantum algorithms for nonlinear problems”, Phys Rev A (Coll Park), vol. 101, no. 1, Jan. 2020, doi: 10.1103/PhysRevA.101.010301.

A. Zeguendry, Z. Jarir, and M. Quafafou, “Quantum Machine Learning: A Review and Case Studies”, Entropy, vol. 25, no. 2. MDPI, Feb. 01, 2023. doi: 10.3390/e25020287.

M. Cerezo et al., “Variational quantum algorithms”, Nature Reviews Physics, vol. 3, no. 9. Springer Nature, pp. 625–644, Sep. 01, 2021. doi: 10.1038/s42254-021-00348-9.

N. Mishra et al., “Quantum Machine Learning: A Review and Current Status”, in Advances in Intelligent Systems and Computing, Springer Science and Business Media Deutschland GmbH, 2021, pp. 101–145, 2021, doi: 10.1007/978-981-15-5619-7_8.

A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, and S. Woerner, “The power of quantum neural networks”, Nat Comput Sci, vol. 1, no. 6, pp. 403–409, Jun. 2021, doi: 10.1038/s43588-021-00084-1.

M. Schuld, I. Sinayskiy, and F. Petruccione, “The quest for a Quantum Neural Network”, Quantum Information Processing, vol. 13, no. 11. Springer New York LLC, pp. 2567–2586, Oct. 21, 2014. doi: 10.1007/s11128-014-0809-8.

I. B. Obot and S. A. Umoren, “Experimental, DFT and QSAR models for the discovery of new pyrazines corrosion inhibitors for steel in oilfield acidizing environment”, Int J Electrochem Sci, vol. 15, no. 9, pp. 9066–9080, Sep. 2020, doi: 10.20964/2020.09.72.

A. H. Radhi et al., “HOMO-LUMO energies and geometrical structures effecton corrosion inhibition for organic compounds predict by DFT and PM3 methods”, NeuroQuantology, vol. 18, no. 1, pp. 37–45, 2020, doi: 10.14704/nq.2020.18.1.NQ20105.

M. Akrom, S. Rustad, H. K. Dipojono, “Prediction of Anti-Corrosion performance of new triazole derivatives via Machine learning”, Comp. and Theoretical Chemistry, vol. 1236, pg. 114599, 2024, doi: 10.1016/j.comptc.2024.114599.

I. B. Obot and N. O. Obi-Egbedi, “Theoretical study of benzimidazole and its derivatives and their potential activity as corrosion inhibitors”, Corros Sci, vol. 52, no. 2, pp. 657–660, Feb. 2010, doi: 10.1016/j.corsci.2009.10.017.

M. Akrom, “Green Corrosion Inhibitors for Iron Alloys: A Comprehensive Review of Integrating Data-Driven Forecasting, Density Functional Theory Simulations, and Experimental Investigation”, Journal of Multiscale Materials Informatics, vol. 1, pg. 22-37, 2024, doi: 10.62411/jimat.v1i1.10495.

D. Singh and B. Singh, “Investigating the impact of data normalization on classification performance”, Appl Soft Comput, vol. 97, Dec. 2020, doi: 10.1016/j.asoc.2019.105524.

M. Akrom, S. Rustad, and H. Kresno, “Machine learning investigation to predict corrosion inhibition capacity of new amino acid compounds as corrosion inhibitors”, Results in Chem., vol. 6, no. September, p. 101126, 2023, doi: 10.1016/j.rechem.2023.101126.

I. T. Jollife and J. Cadima, “Principal component analysis: A review and recent developments”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2065. Royal Society of London, Apr. 13, 2016. doi: 10.1098/rsta.2015.0202.

X. Ying, “An Overview of Overfitting and its Solutions”, in Journal of Physics: Conference Series, Institute of Physics Publishing, Mar. 2019. doi: 10.1088/1742-6596/1168/2/022022.

J. Qin, “Review of ansatz designing techniques for variational quantum algorithms”, in Journal of Physics: Conference Series, Institute of Physics, 2023. doi: 10.1088/1742-6596/2634/1/012043.

J. Cheng, H. Wang, Z. Liang, Y. Shi, S. Han, and X. Qian, “TopGen: Topology-Aware Bottom-Up Generator for Variational Quantum Circuits”, Oct. 2022, [Online]. Available: http://arxiv.org/abs/2210.08190

H. Hirai, “Application of quantum neural network model to a multivariate regression problem”, Oct. 2023, [Online]. Available: http://arxiv.org/abs/2310.12559

R. D. M. Simoes, P. Huber, N. Meier, N. Smailov, R. M. Fuchslin, and K. Stockinger, “Experimental Evaluation of Quantum Machine Learning Algorithms”, IEEE Access, vol. 11, pp. 6197–6208, 2023, doi: 10.1109/ACCESS.2023.3236409.

M. Akrom, S. Rustad, and H. K. Dipojono, “Development of quantum machine learning to evaluate the corrosion inhibition capability of pyrimidine compounds”, Mater Today Commun, vol. 39, Jun. 2024, doi: 10.1016/j.mtcomm.2024.108758.

M. Fernández-Pendás, E. F. Combarro, S. Vallecorsa, J. Ranilla, and I. F. Rúa, “A study of the performance of classical minimizers in the Quantum Approximate Optimization Algorithm”, J Comput Appl Math, vol. 404, Apr. 2022, doi: 10.1016/j.cam.2021.113388.

A. V Tatachar, “Comparative Assessment of Regression Models Based On Model Evaluation Metrics”, International Research Journal of Engineering and Technology, 2021, [Online]. Available: www.irjet.net

D. Chicco Corresp, M. J. Warrens, G. Jurman, and D. Chicco, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE, and RMSE in regression analysis evaluation analysis evaluation 4”, PeerJ Comput Sci, vol. 7, Jul. 2021, doi: 10.7717/peerj-cs.623.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Optimizing Quantum Neural Networks for Predicting the Effectiveness of Drug Compounds as Corrosion Inhibitors

Dimensions Badge
Article History
Submitted: 2024-06-11
Published: 2024-06-26
Abstract View: 182 times
PDF Download: 104 times
How to Cite
Mawaddah, L., Rosyid, M., Santosa, A., & Akrom, M. (2024). Optimizing Quantum Neural Networks for Predicting the Effectiveness of Drug Compounds as Corrosion Inhibitors. Building of Informatics, Technology and Science (BITS), 6(1), 207−215. https://doi.org/10.47065/bits.v6i1.5318
Issue
Section
Articles