Analisis Sentimen Masyarakat Terhadap Pinjaman Online di Twitter Menggunakan Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor
Abstract
The very rapid development of technology has had a big impact on humans. The influence of technological developments that we can feel is in the financial sector. One thing that is quite popular lately is online loans. Pinjol or online loan is a fast and easy online money lending service via an application or website, with fast approval and disbursement, but often has high interest and short tenors. On Twitter, review comments and information used are stored in text form. One of the processes for retrieving text mining information in the text category is Sentiment Analysis to see whether a sentiment or opinion tends to be Positive, Negative or Neutral in the reviews of Pinjol application user comments. In the data collection results there were 600 initial data, namely 122 Positive reviews, 432 Negative reviews and 43 Neutral reviews. Then the sentiment classification process using the Naive Bayes and K-NN algorithms produces accuracy, precision and recall of 68%; 83% and recall 74% on the Naive Bayes algorithm, while the results of accuracy, precision and recall on K-NN are 72%; 74% and recall 96% with experiments using 80% training data and 20% test data
Downloads
References
A. F. I. Muhammad Imam Ghozali, Wibowo Harry Sugiharto, “Analisis Sentimen Pinjaman Online Di Media Sosial Twitter Menggunakan Metode Naive Bayes,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 33, no. 1, pp. 1–12, 2022, doi: 10.30865/klik.v3i6.936.
R. Wahyudi and G. Kusumawardhana, “Analisis Sentimen pada review Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine,” vol. 8, no. 2, pp. 200–207, 2021.
M. Diki Hendriyanto, A. A. Ridha, and U. Enri, “Analisis Sentimen Ulasan Aplikasi Mola Pada Google Play Store Menggunakan Algoritma Support Vector Machine Sentiment Analysis of Mola Application Reviews on Google Play Store Using Support Vector Machine Algorithm,” J. Inf. Technol. Comput. Sci., vol. 5, no. 1, pp. 1–7, 2022.
M. Ula, R. Zulhusna, R. Putra Fhonna, and A. Pratama, “Penerapan Model Klasifikasi K-Nearest Neighbor Dalam Pencarian Kesesuaian Pekerjaan,” Metik J., vol. 6, no. 1, pp. 18–23, 2022, doi: 10.47002/metik.v6i1.343.
D. A. Warraihan, I. Permana, M. Mustakim, and R. Novita, “Analisis Sentimen Pengguna Transportasi Online Maxim Pada Instagram Menggunakan Naïve Bayes Classifier dan K-Nearest Neighbor,” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1134–1143, 2023, doi: 10.30865/mib.v7i3.6336.
Artha Mahendra Putra and Rani Apriani, “Perlindungan Hukum Terhadap Konsumen Jasa Layanan Peminjaman Online Illegal,” The Juris, vol. 6, no. 2, pp. 571–578, 2022, doi: 10.56301/juris.v6i2.630.
D. C. Arisona, G. N. A. Wibowo, S. Siswanto, and ..., “Klasifikasi Pesan Biasa, Operator, Spam, dan Debt Collector Menggunakan K-Nearest Neighbor. docx,” J. INSYPRO …, vol. 8, no. November, pp. 1–6, 2023, [Online]. Available: https://journal.uin-alauddin.ac.id/index.php/insypro/article/view/41264%0Ahttps://journal.uin-alauddin.ac.id/index.php/insypro/article/download/41264/18442
R. Wati et al., “Analisis Sentimen Persepsi Publik Mengenai PPKM Pada Twitter Berbasis SVM Menggunakan Python,” vol. 06, pp. 240–247, 2021.
L. Ardiani and H. Sujaini, “Implementasi Sentiment Analysis Tanggapan Masyarakat Terhadap Pembangunan di Kota Pontianak Implementation of Sentiment Analysis of Community Responses to Development in Pontianak City,” vol. 8, no. 2, pp. 183–190, 2020, doi: 10.26418/justin.v8i2.36776.
H. Rhomadhona and J. Permadi, “Klasifikasi Berita Kriminal Menggunakan Naïve Bayes Classifier (NBC) dengan Pengujian K-Fold Cross Validation,” J. Sains dan Inform., vol. 5, no. 2, pp. 108–117, 2019, doi: 10.34128/jsi.v5i2.177.
A. H. Ruger, M. Suyanto, and M. P. Kurniawan, “Sentimen Analisis Pelanggan Shopee di Twitter menggunakan Algoritma Naive Bayes,” vol. 1, no. 2, pp. 26–29, 2021.
I. Habib Kusuma and N. Cahyono, “Analisis Sentimen Masyarakat Terhadap Penggunaan E-Commerce Menggunakan Algoritma K-Nearest Neighbor,” J. Inform. J. Pengemb. IT, vol. 8, no. 3, pp. 302–307, 2023.
M. Syarifuddinn, “Analisis Sentimen Opini Publik Mengenai Covid-19 Pada Twitter Menggunakan Metode Naïve Bayes Dan Knn,” INTI Nusa Mandiri, vol. 15, no. 1, pp. 23–28, 2020, doi: 10.33480/inti.v15i1.1347.
J. Edukasi, B. Gunawan, H. S. Pratiwi, and E. E. Pratama, “Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes,” vol. 4, no. 2, pp. 113–118, 2018.
A. V. Sudiantoro et al., “Analisis Sentimen Twitter Menggunakan Text Mining Dengan,” vol. 10, no. 2, pp. 398–401, 2018.
Normah, B. Rifai, S. Vambudi, and R. Maulana, “Klasifikasi Penerima Bantuan Sosial Menggunakan Algoritma C 4.5,” J. Tek. Komput. AMIK BSI, vol. 8, no. 2, pp. 174–180, 2022, doi: 10.31294/jtk.v4i2.
Tania Puspa Rahayu Sanjaya, Ahmad Fauzi, and Anis Fitri Nur Masruriyah, “Analisis sentimen ulasan pada e-commerce shopee menggunakan algoritma naive bayes dan support vector machine,” INFOTECH J. Inform. Teknol., vol. 4, no. 1, pp. 16–26, 2023, doi: 10.37373/infotech.v4i1.422.
M. P. Simatupang and D. P. Utomo, “Analisa Testimonial Dengan Menggunakan Algoritma Text Mining Dan Term Frequency- Inverse Document Frequence (Tf-Idf) Pada Toko Allmeeart,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 808–814, 2019, doi: 10.30865/komik.v3i1.1697.
D. Sebagai, S. Untuk, and M. Gelar, “NAIKNYA HARGA BBM PADA TWITTER MENGGUNAKAN ALGORITMA DECISION TREE-KNN-NAÏVE BAYES,” 2022.
H. Harianto and D. Rosiyadi, “Komparasi Algortima C4.5, Naïve Bayes dan k-Nearest Neighbor Sebagai Sistem Pendukung Keputusan Menaikkan Jumlah Peserta Didik,” J. Inform., vol. 7, no. 1, pp. 55–61, 2020, doi: 10.31311/ji.v7i1.7250.
A. D. Adhi Putra, “Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 2, pp. 636–646, 2021, doi: 10.35957/jatisi.v8i2.962.
J. C. Macuácua, J. A. S. Centeno, and C. Amisse, “Data mining approach for dry bean seeds classification,” Smart Agric. Technol., vol. 5, no. April, 2023, doi: 10.1016/j.atech.2023.100240.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Masyarakat Terhadap Pinjaman Online di Twitter Menggunakan Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor
Pages: 596−605
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).