Penerapan Data Mining Untuk Penjurusan Kelas dengan Menggunakan Algoritma K-Medoids


  • Jhiro Faran Universitas Nasional, Jakarta, Indonesia
  • Rima Tamara Aldisa * Mail Universitas Nasional, Jakarta, Indonesia
  • (*) Corresponding Author
Keywords: Class Major; Data Mining; Cluster; K-Medoids algorithm

Abstract

Class assignments are carried out to focus students on the subjects that will be studied during Senior High School (SMA). Class majors are generally carried out in class of all the main values used in the class majoring process. This is a problem with the class majoring process, where mistakes often occur in the class majoring process. Mistakes regarding class majors made by students will have quite a fatal impact on the student, apart from not being able to change classes, it will also have a laziness effect on the student because it does not match the student's abilities. Solving this problem can be done using a technique called data mining. The solution to this problem is done using clustering. The K-Medoids algorithm is the algorithm used to solve the problems in this research. The process of grouping or forming clusters in the K-Medoids algorithm is based on calculating the closest distance to each object, calculating the closest distance is based on determining the centeroid value first. The K-Medoids algorithm can form 2 (two) clusters according to existing class majors. The results obtained show that there are 3 (three) alternatives included in cluster 1 and also 12 (twelve) alternatives included in cluster 2.

Downloads

Download data is not yet available.

References

V. Anestiviya and A. F. O. Pasaribu, “Analisis Pola Menggunakan Metode C4.5 Untuk Peminatan Jurusan Siswa Berdasarkan Kurikulum (Studi Kasus : Sman 1 Natar),” J. Teknol. dan Sist. Inf., vol. 2, no. 1, pp. 80–85, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI.

D. N. Hidayat and A. B. Setiawan, “Sistem Pendukung Keputusan Penjurusan Siswa Berbasis Web Di Smk Intensif Baitussalam Menggunakan K-Means Clustering,” in Seminar Nasional Inovasi Teknologi, 2022, pp. 221–225, [Online]. Available: https://proceeding.unpkediri.ac.id/index.php/inotek/article/view/2488%0Ahttps://proceeding.unpkediri.ac.id/index.php/inotek/article/download/2488/1551.

M. Syahril, S. Kusnasari, A. Muhazir, and A. Syahputri, “Implementasi Data Mining Untuk Rekomendasi Jurusan Menggunakan Algoritma K-Means Clustering Muhammad,” J. Teknol. Sist. Inf. dan Sist. Komput. TGD, vol. 6, no. 1, pp. 235–245, 2023.

N. M. Purnamasari, A. Syauqi, and D. A. Pramana, “Pengelompokan Data Calon Siswa Baru Di Sekolah Menengah Kejuruan menggunakan Algoritma K-Means,” J. Sist. Inf. dan Teknol. Perad., vol. 4, no. 1, pp. 24–30, 2023.

R. Sidik, N. Suarna, and A. R. Dikananda, “ANALISA DATA SET PEMINATAN SISWA MENGGUNAKAN ALGORITMA K- MEANS DENGAN OPTIMIZE PARAMETER DI SEKOLAH MENENGAH KEJURUAN (STUDI KASUS: SMK PUI GEGESIK),” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 2, pp. 1197–1203, 2023.

W. Kokoh Andriyan, “Penerapan Data Mining Dengan Menggunakan Metode K-Means Clustering Dalam Pengelompokan Data Nilai Pada SMA YKPP PENDOPO Untuk Menentukan Jurusan Ipa Dan Ips,” J. Jupiter, vol. 15, no. 1, pp. 452–461, 2023.

R. T. Aldisa, “Data Mining Penentuan Jurusan Siswa Menggunakan Metode Agglomerative Hierarchical Clustering (AHC),” J. Media Inform. Budidarma, vol. 7, no. 2, pp. 873–880, 2023, doi: 10.30865/mib.v7i2.6092.

T. Syahputra, “Penerapan Data Mining Dalam Pengelompokan Kelas Mahasiswa Berdasarkan Hasil Ujian Saringan Masuk Dengan Algoritma K-Means,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 5, no. 2, pp. 161–166, 2019, doi: 10.33330/jurteksi.v5i2.350.

A. Hasnan and M. Arif, “Penerapan Data Mining Untuk Pengelompokan Kelas Siswa Unggulan Berdasarkan Nilai Raport Menggunakan Metode K- Means Clustering ( Studi Kasus : SMK Muhammadiyah 3 Weleri ),” J. Tek. Inform. dan Desain Komun. Vis., vol. 1, no. 2, pp. 82–93, 2022.

Firza and Sarjono, “Penerapan Algoritma K-Means Dalam Metode Clustering Untuk Peminatan Jurusan Bagi Siswa Swasta Pelita Raya Kota Jambi,” J. Manaj. Sist. Inf., vol. 5, no. 3, pp. 371–382, 2020, [Online]. Available: http://ejournal.stikom-db.ac.id/index.php/manajemensisteminformasi/article/view/907.

S. Sindi, W. R. O. Ningse, I. A. Sihombing, F. I. R.H.Zer, and D. Hartama, “Analisis Algoritma K-Medoids Clustering Dalam Pengelompokan Penyebaran Covid-19 Di Indonesia,” J. Teknol. Inf., vol. 4, no. 1, pp. 166–173, 2020, doi: 10.36294/jurti.v4i1.1296.

I. I. P. Damanik, S. Solikhun, I. S. Saragih, I. Parlina, D. Suhendro, and A. Wanto, “Algoritma K-Medoids untuk Mengelompokkan Desa yang Memiliki Fasilitas Sekolah di Indonesia,” Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, p. 520, 2019, doi: 10.30645/senaris.v1i0.58.

A. A. D. Sulistyawati and M. Sadikin, “Penerapan Algoritma K-Medoids Untuk Menentukan Segmentasi Pelanggan,” Sistemasi, vol. 10, no. 3, p. 516, 2021, doi: 10.32520/stmsi.v10i3.1332.

N. L. Anggreini, “Teknik Clustering Dengan Algoritma K-Medoids Untuk Menangani Strategi Promosi Di Politeknik Tedc Bandung,” J. Teknol. Inf. dan Pendidik., vol. 12, no. 2, pp. 1–7, 2019, doi: 10.24036/tip.v12i2.215.

I. Kamila, U. Khairunnisa, and M. Mustakim, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 5, no. 1, p. 119, 2019, doi: 10.24014/rmsi.v5i1.7381.

F. Y. Rahman, I. I. Purnomo, and N. Hijriana, “PENERAPAN ALGORITMA DATA MINING UNTUK KLASIFIKASI KUALITAS AIR,” Technologia, vol. 13, no. 3, pp. 228–232, 2022.

S. Ucha Putri, E. Irawan, and F. Rizky, “Implementasi Data Mining Untuk Prediksi Penyakit Diabetes Dengan Algoritma C4.5,” Januari, vol. 2, no. 1, pp. 39–46, 2021.

F. Faisal, L. A. Giopani, M. Fitriah, Z. C. Dwynne, and S. Syahidatul, “Comparison of K-Means and K-Medoids Algorithms for Temperature Grouping in Riau Province Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokan Suhu di Provinsi Riau,” IJIRSE Indones. J. Inform. Res. Softw. Eng., vol. 2, no. 2, pp. 128–134, 2022.

S. D. Nirwana, M. I. Jambak, and A. Bardadi, “Perbandingan Algoritma K-Means Dan K-Medoids Dalam Clustering Rata-Rata Penambahan Kasus Covid-19 Berdasarkan Kota/Kabupaten Di Provinsi Sumatera Selatan,” JSiI (Jurnal Sist. Informasi), vol. 9, no. 2, pp. 126–131, 2022, doi: 10.30656/jsii.v9i2.5127.

R. K. Purba and E. Bu’ulolo, “Implementasi Algoritma K-Medoids dalam Pengelompokan Mahasiswa yang Layak Mendapat Bantuan Uang Kuliah Tunggal,” INSOLOGI J. Sains dan Teknol., vol. 1, no. 2, pp. 79–86, 2022, doi: 10.55123/insologi.v1i2.195.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Data Mining Untuk Penjurusan Kelas dengan Menggunakan Algoritma K-Medoids

Dimensions Badge
Article History
Submitted: 2023-09-21
Published: 2023-09-30
Abstract View: 405 times
PDF Download: 347 times
How to Cite
Faran, J., & Aldisa, R. T. (2023). Penerapan Data Mining Untuk Penjurusan Kelas dengan Menggunakan Algoritma K-Medoids. Building of Informatics, Technology and Science (BITS), 5(2), 543−552. https://doi.org/10.47065/bits.v5i2.4313
Section
Articles

Most read articles by the same author(s)

1 2 3 > >>