Sentiment Analysis of Maxim Online Transportation App Reviews using Support Vector Machine (SVM) Algorithm


  • Putri Kurniawati * Mail Telkom University, Bandung, Indonesia
  • Riska Yanu Fa'rifah Telkom University, Bandung, Indonesia
  • Deden Witarsyah Telkom University, Bandung, Indonesia
  • (*) Corresponding Author
Keywords: Maxim; Online Transportation; Sentiment Analysis; Classification; Support Vector Machine

Abstract

The continuous emergence of online transportation service platforms is one of the effects of the ever-increasing technological advancements. One such online transportation service application, Maxim, has recently been slowly gaining ground in the ride-hailing market in Indonesia. According to data collected by one media outlet in 2022, Maxim ranks third as the most preferred online transportation platform by the public, following Gojek and Grab. This suggests that there are factors causing users to lack interest in or hesitate to use the Maxim application. On the Google Play Store, user ratings (in numerical values) and written reviews serve as reasons for the potential users lack of interest. Analyzing ratings alone is less accurate and does not provide in-depth information and meaning regarding users experiences. To understand user opinions about Maxim's service and functionality, an analysis of user reviews is crucial. Therefore, this research conducts sentiment analysis on Maxim user reviews using the Support Vector Machine (SVM) algorithm to classify reviews quickly. The reviews are categorized into two classes: positive and negative sentiment. The classification process is carried out in three scenarios with different data training and testing ratios: 60:40, 70:30, and 80:20, using a Linear kernel and hyperparameter optimization with GridSearch. The best accuracy is achieved with a 70:30 ratio, which is 89.82%. Evaluation using the confusion matrix also yields a precision of 92.66%, recall of 94.09%, and an F1 score of 93.38%. The ROC-AUC curve evaluation results in an AUC value of 0.8505. The sentiment analysis results tend to lean towards positive sentiment, indicating a high level of user satisfaction with the Maxim application. Based on these sentiment results, developers can identify what aspects of the Maxim application need to be maintained and improved.

Downloads

Download data is not yet available.

References

M. Arif and K. U. Apjii, “Profil Internet Indonesia 2022,” no. June, 2022.

R. K. Hastuti, “Duh, 2 Tahun Terakhir Ada 10 Ojol yang Tergilas Grab & Gojek,” CNBC Indonesia, 2019. https://www.cnbcindonesia.com/tech/20190813122355-37-91630/duh-2-tahun-terakhir-ada-10-ojol-yang-tergilas-grab-gojek

Shopback, “Sering Membandingkan Harga Transportasi Online? Aplikasi Ini Akan Memudahkan Penggunanya,” Shopback.co.id, 2018. https://www.shopback.co.id/katashopback/transportasi-online-makin-digemari

Taximaxim.com, “Tentang Perusahaan.” https://id.taximaxim.com/id/2093-jakarta/about/ (tanggal akses 10 Juli 2023)

A. Mutia, “Survei: Publik Jabodetabek Paling Sering Pakai Gojek, Bagaimana Grab, Maxim, dan InDriver?,” Databoks.katadata.co.id, 2022. https://databoks.katadata.co.id/datapublish/2022/10/11/survei-publik-jabodetabek-paling-sering-pakai-gojek-bagaimana-grab-maxim-dan-indriver

P. A. Permatasari, L. Linawati, and L. Jasa, “Survei Tentang Analisis Sentimen Pada Media Sosial,” Maj. Ilm. Teknol. Elektro, vol. 20, no. 2, p. 177, 2021, doi: 10.24843/mite.2021.v20i02.p01.

S. W. Iriananda et al., “ANALISIS SENTIMEN DAN ANALISIS DATA EKSPLORATIF ULASAN,” no. Ciastech, pp. 473–482, 2021.

A. Saepulrohman, S. Saepudin, and D. Gustian, “Analisis Sentimen Kepuasan Pengguna Aplikasi Whatsapp Menggunakan Algoritma Naïve Bayes Dan Support Vector Machine,” is Best Account. Inf. Syst. Inf. Technol. Bus. Enterp. this is link OJS usf@, vol. 6, no. 2, pp. 91–105, 2021, doi: 10.34010/aisthebest.v6i2.4919.

K. A. Rokhman, B. Berlilana, and P. Arsi, “Perbandingan Metode Support Vector Machine Dan Decision Tree Untuk Analisis Sentimen Review Komentar Pada Aplikasi Transportasi Online,” J. Inf. Syst. Manag., vol. 3, no. 1, pp. 1–7, 2021, doi: 10.24076/joism.2021v3i1.341.

A. M. Rahat, A. Kahir, and A. K. M. Masum, “Comparison of Naive Bayes and SVM Algorithm based on Sentiment Analysis Using Review Dataset,” Proc. 2019 8th Int. Conf. Syst. Model. Adv. Res. Trends, SMART 2019, pp. 266–270, 2020, doi: 10.1109/SMART46866.2019.9117512.

N. Herlinawati, Y. Yuliani, S. Faizah, W. Gata, and S. Samudi, “Analisis Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes dan Support Vector Machine,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, p. 293, 2020, doi: 10.24114/cess.v5i2.18186.

S. A. Salloum, M. Al-emran, and A. A. Monem, “Using Text Mining Techniques for Extracting Information from Research Using Text Mining Techniques for Extracting Information from Research Articles,” no. January, 2018, doi: 10.1007/978-3-319-67056-0.

S. Bhatia, M. Sharma, and K. K. Bhatia, “Sentiment Analysis and Mining of Opinions,” Stud. Big Data, vol. 30, no. May, pp. 503–523, 2018, doi: 10.1007/978-3-319-60435-0_20.

J. Han, J. Pei, and H. Tong, Data Mining : Concepts and Techniques. Morgan Kaufmann, 2022.

K. X. Han, W. Chien, C. C. Chiu, and Y. T. Cheng, “Application of support vector machine (SVM) in the sentiment analysis of twitter dataset,” Appl. Sci., vol. 10, no. 3, 2020, doi: 10.3390/app10031125.

P. S. Saragih, D. Witarsyah, F. Hamami, and J. M. MacHado, “Sentiment Analysis of Social Media Twitter with Case of Large Scale Social Restriction in Jakarta using Support Vector Machine Algorithm,” 2021 Int. Conf. Adv. Data Sci. E-Learning Inf. Syst. ICADEIS 2021, vol. 19, no. January 2020, pp. 1–6, 2021, doi: 10.1109/ICADEIS52521.2021.9701961.

S. S. Chaeikar, A. A. Manaf, A. A. Alarood, and M. Zamani, “PFW: Polygonal fuzzy weighted—an SVM kernel for the classification of overlapping data groups,” Electron., vol. 9, no. 4, 2020, doi: 10.3390/electronics9040615.

A. Zaiem and N. Charibaldi, “Komparasi Fungsi Kernel Metode Support Vector Machine untuk Analisis Sentimen Instagram dan Twitter ( Studi Kasus : Komisi Pemberantasan Korupsi ),” vol. 9, no. 2, pp. 33–42, 2021.

A. Pranata, E. Budianita, Yusra, and E. P. Cynthia, “Klasifikasi Sentimen Terhadap Maxim Menggunakan Algoritma SVM Pada Media Sosial TwittAnggi Pranata, N. (2022). Klasifikasi Sentimen Terhadap Maxim Menggunakan Algoritma SVM Pada Media Sosial Twitter. Klasifikasi Sentimen Terhadap Maxim Menggunakan Algorit,” Klasifikasi Sentimen Terhadap Maxim Menggunakan Algoritm. SVM Pada Media Sos. Twitter, vol. 5, no. 3, pp. 332–341, 2022.

W. Musu, A. Ibrahim, and Heriadi, “Pengaruh Komposisi Data Training dan Testing terhadap Akurasi Algoritma C4 . 5,” Pros. Semin. Ilm. Sist. Inf. Dan Teknol. Inf., vol. X, no. 1, pp. 186–195, 2021.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Sentiment Analysis of Maxim Online Transportation App Reviews using Support Vector Machine (SVM) Algorithm

Dimensions Badge
Article History
Submitted: 2023-09-10
Published: 2023-09-27
Abstract View: 383 times
PDF Download: 325 times
How to Cite
Kurniawati, P., Fa’rifah, R., & Witarsyah, D. (2023). Sentiment Analysis of Maxim Online Transportation App Reviews using Support Vector Machine (SVM) Algorithm. Building of Informatics, Technology and Science (BITS), 5(2), 466−475. https://doi.org/10.47065/bits.v5i2.4265
Section
Articles