Prediction Retweet Using User-Based and Content-Based with Artificial Neural Network-Harmony Search


  • Rizky Ahmad Saputra Telkom University, Bandung, Indonesia
  • Jondri Jondri * Mail Telkom University, Bandung, Indonesia
  • Kemas Muslim Lhaksmana Telkom University, Bandung, Indonesia
  • (*) Corresponding Author
Keywords: Artificial Neural Network; Harmony Search; Twitter; Retweet; Prediction

Abstract

Online social networking services allow users to post content in the form of text, images or videos. Twitter is a microblogging social networking service that enables its users to send and read text-based messages of up to 140 characters. Retweet is one of the features in Twitter that is important in disseminating information, popular tweets reflect the latest trends on Twitter, the main mechanism that encourages information dissemination is the possibility for users to re-share content posted by their social connections, then it can flow throughout the system. Retweets happen when someone republishes or forwards a post to their homepage and personal profile. Most retweets are credited to the original author of the original post. The retweet prediction system uses an Artificial neural network optimized for Harmony search with tweets about the Jakarta-Bandung Fast Train, which shows the best results when the oversampling method has been carried out with an f1 score of 96.8%.

Downloads

Download data is not yet available.

References

B. Robert and E. B. Brown, SOCIAL MEDIA AND SOCIAL ORDER, no. 1. 2021.

C. Setiawan, “Obesitas , Olahraga , dan Diet : Analisis Sentimen pada Twitter Berbasis Analitik Big Data,” no. March 2022, pp. 71–81, 2023.

F. Zahria Emeraldien, R. Jefri Sunarsono, and R. Alit, “Twitter Sebagai Platform Komunikasi Politik Di Indonesia,” J. Teknol. dan Inf., vol. 14, no. 1, pp. 21–30, 2019, [Online]. Available: www.statisticbrain.com

R. Mchaney and D. D. Sacht, Web 2.0 and Social Media. 2016.

R. H. Anggia, Jondri, and K. M. L, “Prediksi Retweet Berbasis Fitur Content Similarity dan Content Based Dengan Menggunakan Metode Support Vector Machine ( SVM ),” vol. 8, no. 5, pp. 11164–11173, 2021.

B. Y. Pandji, I. Indwiarti, and A. A. Rohmawati, “Perbandingan Prediksi Harga Saham dengan model ARIMA dan Artificial Neural Network,” Indones. J. Comput., vol. 4, no. 2, pp. 189–198, 2019, doi: 10.21108/indojc.2019.4.2.344.

L. Abualigah, A. Diabat, and Z. W. Geem, “A comprehensive survey of the harmony search algorithm in clustering applications,” Appl. Sci., vol. 10, no. 11, pp. 1–26, 2020, doi: 10.3390/app10113827.

E. P. Rohmawan, “Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Decision Tree dan Artificial Neural Network,” J. Ilm. MATRIK Vol.20 No.1, April 201821-30, vol. 20, no. 1, pp. 21–30, 2018.

A. Harmony, S. Di, P. T. Adi, and S. Abadi, “OPTIMASI PENJADWALAN PRODUKSI MENGGUNAKAN PENDEKATAN Jurnal DISPROTEK,” vol. 11, pp. 7–12, 2020.

H. Amarullah Purwaatmaja Ash-Shidiq EFSA and K. Muslim Lhaksmana, “Prediksi Retweet Menggunakan Fitur Berbasis Pengguna dan Fitur Berbasis Konten dengan Metode Klasifikasi ANN,” vol. 8, no. 5, pp. 11174–11182, 2021.

R. Rakes, J. Jondri, and ..., “Prediksi Retweet Berdasarkan Feature User-based Menggunakan Metode Klasifikasi Support Vector Machine,” eProceedings …, vol. 8, no. 5, pp. 11183–11191, 2021, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/15630%0Ahttps://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/15630/15343

T. Akhir, “Prediksi Retweet Menggunakan Fitur User based dan Content Based dengan Metode Klasifikasi ANN-GA Program Studi Sarjana Informatika Fakultas Informatika Universitas Telkom Bandung,” 2022.

M. R. Akbar et al., “Prediksi Retweet Berdasarkan User-Based dan Content - Based Menggunakan Metode Ensemble Stacking,” vol. 10, no. 2, pp. 1950–1962, 2023.

H. A. P. A.-S. EFSA, Jondri, and K. M. Lhaksmana, “Prediksi Retweet Menggunakan Fitur Berbasis Pengguna dan Fitur Berbasis Konten dengan Metode Klasifikasi ANN,” vol. 8, no. 5, pp. 11207–11215, 2021.

M. S. A. Hapsary, S. Subiyanto, and H. S. Firdaus, “Analisis Prediksi Perubahan Penggunaan Lahan Dengan Pendekatan Artificial Neural Network Dan Regresi Logistik Di Kota Balikpapan,” J. Geod. Undip, vol. 10, no. 2, pp. 1–10, 2021.

R. Zannah, “Analisis Sentimen Pada Media Sosial Twitter Untuk Klasifikasi Opini Islam Radikal Menggunakan Jaringan Saraf Tiruan,” no. September 2017, pp. 46–54, 2019, [Online]. Available: http://digilib.uinsby.ac.id/32982/

W. Hartawan, “Otomasi Pid Tuning Untuk Optimasi Kontrol Quadcopter Menggunakan Metode Harmony Search,” J. Inov. Tek. Inform., 2021, [Online]. Available: http://journal.universitaspahlawan.ac.id/index.php/jiti/article/view/2012

A. Rahman, E. M. Yuniarno, and I. K. E. Purnama, “Optimasi Penjadwalan Perkuliahan Menggunakan Metode Harmony Search,” Al-Khwarizmi J. Pendidik. Mat. dan Ilmu Pengetah. Alam, vol. 2, no. 2, pp. 47–58, 2018, doi: 10.24256/jpmipa.v2i2.111.

E. Erlin, Y. Desnelita, N. Nasution, L. Suryati, and F. Zoromi, “Dampak SMOTE terhadap Kinerja Random Forest Classifier berdasarkan Data Tidak seimbang,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 3, pp. 677–690, 2022, doi: 10.30812/matrik.v21i3.1726.

N. Hadianto, H. B. Novitasari, and A. Rahmawati, “Klasifikasi Peminjaman Nasabah Bank Menggunakan Metode Neural Network,” J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 163–170, 2019, doi: 10.33480/pilar.v15i2.658.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Prediction Retweet Using User-Based and Content-Based with Artificial Neural Network-Harmony Search

Dimensions Badge
Article History
Submitted: 2023-08-13
Published: 2023-09-27
Abstract View: 305 times
PDF Download: 174 times
How to Cite
Saputra, R., Jondri, J., & Lhaksmana, K. (2023). Prediction Retweet Using User-Based and Content-Based with Artificial Neural Network-Harmony Search. Building of Informatics, Technology and Science (BITS), 5(2), 407−413. https://doi.org/10.47065/bits.v5i2.4079
Section
Articles

Most read articles by the same author(s)

1 2 > >>