Prediction Retweet Using User-Based and Content-Based with Artificial Neural Network-Harmony Search
Abstract
Online social networking services allow users to post content in the form of text, images or videos. Twitter is a microblogging social networking service that enables its users to send and read text-based messages of up to 140 characters. Retweet is one of the features in Twitter that is important in disseminating information, popular tweets reflect the latest trends on Twitter, the main mechanism that encourages information dissemination is the possibility for users to re-share content posted by their social connections, then it can flow throughout the system. Retweets happen when someone republishes or forwards a post to their homepage and personal profile. Most retweets are credited to the original author of the original post. The retweet prediction system uses an Artificial neural network optimized for Harmony search with tweets about the Jakarta-Bandung Fast Train, which shows the best results when the oversampling method has been carried out with an f1 score of 96.8%.
Downloads
References
B. Robert and E. B. Brown, SOCIAL MEDIA AND SOCIAL ORDER, no. 1. 2021.
C. Setiawan, “Obesitas , Olahraga , dan Diet : Analisis Sentimen pada Twitter Berbasis Analitik Big Data,” no. March 2022, pp. 71–81, 2023.
F. Zahria Emeraldien, R. Jefri Sunarsono, and R. Alit, “Twitter Sebagai Platform Komunikasi Politik Di Indonesia,” J. Teknol. dan Inf., vol. 14, no. 1, pp. 21–30, 2019, [Online]. Available: www.statisticbrain.com
R. Mchaney and D. D. Sacht, Web 2.0 and Social Media. 2016.
R. H. Anggia, Jondri, and K. M. L, “Prediksi Retweet Berbasis Fitur Content Similarity dan Content Based Dengan Menggunakan Metode Support Vector Machine ( SVM ),” vol. 8, no. 5, pp. 11164–11173, 2021.
B. Y. Pandji, I. Indwiarti, and A. A. Rohmawati, “Perbandingan Prediksi Harga Saham dengan model ARIMA dan Artificial Neural Network,” Indones. J. Comput., vol. 4, no. 2, pp. 189–198, 2019, doi: 10.21108/indojc.2019.4.2.344.
L. Abualigah, A. Diabat, and Z. W. Geem, “A comprehensive survey of the harmony search algorithm in clustering applications,” Appl. Sci., vol. 10, no. 11, pp. 1–26, 2020, doi: 10.3390/app10113827.
E. P. Rohmawan, “Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Decision Tree dan Artificial Neural Network,” J. Ilm. MATRIK Vol.20 No.1, April 201821-30, vol. 20, no. 1, pp. 21–30, 2018.
A. Harmony, S. Di, P. T. Adi, and S. Abadi, “OPTIMASI PENJADWALAN PRODUKSI MENGGUNAKAN PENDEKATAN Jurnal DISPROTEK,” vol. 11, pp. 7–12, 2020.
H. Amarullah Purwaatmaja Ash-Shidiq EFSA and K. Muslim Lhaksmana, “Prediksi Retweet Menggunakan Fitur Berbasis Pengguna dan Fitur Berbasis Konten dengan Metode Klasifikasi ANN,” vol. 8, no. 5, pp. 11174–11182, 2021.
R. Rakes, J. Jondri, and ..., “Prediksi Retweet Berdasarkan Feature User-based Menggunakan Metode Klasifikasi Support Vector Machine,” eProceedings …, vol. 8, no. 5, pp. 11183–11191, 2021, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/15630%0Ahttps://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/15630/15343
T. Akhir, “Prediksi Retweet Menggunakan Fitur User based dan Content Based dengan Metode Klasifikasi ANN-GA Program Studi Sarjana Informatika Fakultas Informatika Universitas Telkom Bandung,” 2022.
M. R. Akbar et al., “Prediksi Retweet Berdasarkan User-Based dan Content - Based Menggunakan Metode Ensemble Stacking,” vol. 10, no. 2, pp. 1950–1962, 2023.
H. A. P. A.-S. EFSA, Jondri, and K. M. Lhaksmana, “Prediksi Retweet Menggunakan Fitur Berbasis Pengguna dan Fitur Berbasis Konten dengan Metode Klasifikasi ANN,” vol. 8, no. 5, pp. 11207–11215, 2021.
M. S. A. Hapsary, S. Subiyanto, and H. S. Firdaus, “Analisis Prediksi Perubahan Penggunaan Lahan Dengan Pendekatan Artificial Neural Network Dan Regresi Logistik Di Kota Balikpapan,” J. Geod. Undip, vol. 10, no. 2, pp. 1–10, 2021.
R. Zannah, “Analisis Sentimen Pada Media Sosial Twitter Untuk Klasifikasi Opini Islam Radikal Menggunakan Jaringan Saraf Tiruan,” no. September 2017, pp. 46–54, 2019, [Online]. Available: http://digilib.uinsby.ac.id/32982/
W. Hartawan, “Otomasi Pid Tuning Untuk Optimasi Kontrol Quadcopter Menggunakan Metode Harmony Search,” J. Inov. Tek. Inform., 2021, [Online]. Available: http://journal.universitaspahlawan.ac.id/index.php/jiti/article/view/2012
A. Rahman, E. M. Yuniarno, and I. K. E. Purnama, “Optimasi Penjadwalan Perkuliahan Menggunakan Metode Harmony Search,” Al-Khwarizmi J. Pendidik. Mat. dan Ilmu Pengetah. Alam, vol. 2, no. 2, pp. 47–58, 2018, doi: 10.24256/jpmipa.v2i2.111.
E. Erlin, Y. Desnelita, N. Nasution, L. Suryati, and F. Zoromi, “Dampak SMOTE terhadap Kinerja Random Forest Classifier berdasarkan Data Tidak seimbang,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 3, pp. 677–690, 2022, doi: 10.30812/matrik.v21i3.1726.
N. Hadianto, H. B. Novitasari, and A. Rahmawati, “Klasifikasi Peminjaman Nasabah Bank Menggunakan Metode Neural Network,” J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 163–170, 2019, doi: 10.33480/pilar.v15i2.658.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Prediction Retweet Using User-Based and Content-Based with Artificial Neural Network-Harmony Search
Pages: 407−413
Copyright (c) 2023 Rizky Ahmad Saputra, Jondri Jondri, Kemas Muslim Lhaksmana

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).