Klasifikasi Hama Serangga pada Pertanian Menggunakan Metode Convolutional Neural Network
Abstract
Insect pest attacks pose a serious threat that can potentially cause significant losses in agricultural production. Therefore, the effective recognition and control of insect pests are crucial for maintaining agricultural productivity and quality of yields. With the advancement of computer technology and artificial intelligence, computer technology can be utilized to automatically recognize images in object recognition, particularly for insect pest classification using the Convolutional Neural Network (CNN) method with the Xception architecture. CNN is one of the types of deep feed-forward artificial neural networks widely used in digital image analysis and can process data in the form of grid patterns. CNN consists of three types of layers: convolutional layer, pooling layer, and fully connected layer. The use of CNN in this research aims to facilitate the classification of insect pests. The CNN process involves stages of training, testing, and validation on insect pests to determine the classification of images of various insect pest species. This research utilizes 1363 image samples with 13 classes of insect pests. The training process of CNN involves several parameters such as batch size, number of epochs, learning rate, and optimizer. The experiment's results indicate that the best accuracy achieved by this model is 93.81% during the training phase and 81.75% during the validation phase. This demonstrates that the model successfully performs insect pest classification using the CNN method.
Downloads
References
Z. C. J. Kristiaga, Sutoyo, dan I. M. I. Agastya, “Kelimpahan Serangga Musuh Alami dan Serangga Hama pada Ekosistem Tanaman Cabai Merah (Capsicum Annum L.) pada Fase Vegetatif di Kecamatan Dau Kabupaten Malang,” J. Penelit. Pertan. Terap., vol. 20, no. 3, hal. 230–236, 2020.
M. F. N. Syahbani dan N. G. Ramadhan, “Klasifikasi Gerakan Yoga dengan Model Convolutional Neural Network Menggunakan Framework Streamlit,” J. Media Inform. Budidarma, vol. 7, no. 1, hal. 509–519, 2023, doi: 10.30865/mib.v7i1.5520.
U. S. Rahmadhani dan N. L. Marpaung, “Klasifikasi Jamur Berdasarkan Genus dengan Menggunakan Metode CNN,” J. Inform. J. Pengemb. IT, vol. 8, no. 2, hal. 169–173, 2023.
S. Yuliany, Aradea, dan A. N. Rachman, “Implementasi Deep Learning pada Sistem Klasifikasi Hama Tanaman Padi Menggunakan Metode Convolutional Neural Network (CNN),” J. Buana Inform., vol. 13, no. 1, hal. 54–65, 2022, doi: 10.24002/jbi.v13i1.5022.
D. Alamsyah dan D. Pratama, “Implementasi Convolutional Neural Networks (CNN) untuk Klasifikasi Ekspresi Citra Wajah pada FER-2013 Dataset,” J. Teknol. Inf., vol. 4, no. 2, hal. 350–355, 2020, doi: 10.36294/jurti.v4i2.1714.
M. Sanjaya dan E. Nurraharjo, “Deteksi Jenis Rempah-Rempah Menggunakan Metode Convolutional Neural Network Secara Real Time,” J. Sains Komput. Inform. (J-SAKTI, vol. 7, no. 1, hal. 22–31, 2023.
R. Abdulhakim, Carudin, dan B. Arif Dermawan, “Analisis dan Penerapan Algoritma Convolutional Neural Network untuk Klasifikasi Kendaraan Prioritas,” J. Sains dan Inform., vol. 7, no. 2, hal. 135–144, 2021, doi: 10.34128/jsi.v7i2.335.
Samuel, K. R. Prilianti, H. Setiawan, P. Mimboro, dan P. Korespondensi, “Perkebunan Sawit Menggunakan Model Convolutional Neural Network ( CNN ) pada Perangkat Lunak Sistem Informasi the Method of Automatic Tree Detection on Oil Palm Plantation Images Using Convolutional Neural Network ( Cnn ) Model Using,” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 7, hal. 1689–1698, 2022, doi: 10.25126/jtiik.202296772.
A. E. Putra, M. F. Naufal, dan V. R. Prasetyo, “Klasifikasi Jenis Rempah Menggunakan Convolutional Neural Network dan Transfer Learning,” JEPIN (Jurnal Edukasi dan Penelit. Inform., vol. 9, no. 1, hal. 12–18, 2023.
A. Jakaria, S. Mu’minah, D. Riana, dan S. Hadianti, “Klasifikasi Varietas Buah Kiwi dengan Metode Convolutional Neural Networks Menggunakan Keras,” J. Media Inform. Budidarma, vol. 5, no. 4, hal. 1309, 2021, doi: 10.30865/mib.v5i4.3166.
H. Kurniawan dan K. Kusrini, “Klasifikasi Pengenalan Wajah Siswa pada Sistem Kehadiran dengan Menggunakan Metode Convolutional Neural Network,” J. Media Inform. Budidarma, vol. 7, no. 2, hal. 846–856, 2023, doi: 10.30865/mib.v7i2.5958.
A. H. Nasrullah dan H. Annur, “Implementasi Metode Convolutional Neural Network Untuk Identifikasi Citra Digital Daun,” J. Media Inform. Budidarma, vol. 7, no. 2, hal. 726–736, 2023, doi: 10.30865/mib.v7i2.5962.
T. Bariyah, M. Arif Rasyidi, dan Ngatini, “Convolutional Neural Network Untuk Metode Klasifikasi Multi-Label pada Motif Batik,” Techno.COM, vol. 20, no. 1, hal. 155–165, 2021.
M. F. Naufal, J. Siswantoro, dan M. G. K. Wicaksono, “Klasifikasi Tulisan Tangan pada Resep Obat Menggunakan Convolutional Neural Network,” Techno.Com, vol. 22, no. 2, hal. 508–526, 2023, doi: 10.33633/tc.v22i2.8075.
U. Khultsum dan G. Taufik, “Komparasi Kinerja DenseNet 121 dan MobileNet untuk Klasifikasi Citra Penyakit Daun Kentang,” JURIKOM (Jurnal Ris. Komputer), vol. 10, no. 2, hal. 558−565, 2023, doi: 10.30865/jurikom.v10i2.6047.
R. Kurniawan, P. B. Wintoro, Y. Mulyani, dan M. Komarudin, “Implementasi Arsitektur Xception Pada Model Machine Learning Klasifikasi Sampah Anorganik,” JITET (Jurnal Inform. dan Tek. Elektro Ter., vol. 11, no. 2, hal. 233–236, 2023, doi: 10.23960/jitet.v11i2.3034.
D. Husen, K. Kusrini, dan K. Kusnawi, “Deteksi Hama pada Daun Apel Menggunakan Algoritma Convolutional Neural Network,” J. Media Inform. Budidarma, vol. 6, no. 4, hal. 2103–2110, 2022, doi: 10.30865/mib.v6i4.4667.
R. Shinta, Jasril, M. Irsyad, F. Yanto, dan S. Sanjaya, “Klasifikasi Citra Penyakit Daun Tanaman Padi Menggunakan CNN dengan Arsitektur VGG-19,” J. Sains dan Inform., vol. 9, no. 1, hal. 37–45, 2023, doi: 10.22216/jsi.v9i1.2175.
D. Irfansyah, M. Mustikasari, dan A. Suroso, “Arsitektur Convolutional Neural Network (CNN) Alexnet untuk Klasifikasi Hama pada Citra Daun Tanaman Kopi,” J. Inform. J. Pengemb. IT, vol. 6, no. 2, hal. 87–92, 2021, [Daring]. Tersedia pada: http://ejournal.poltektegal.ac.id/index.php/informatika/article/view/2802
M. A. Hasan, Y. Riyanto, dan D. Riana, “Grape Leaf Image Disease Classification Using CNN-VGG16 Model,” J. Teknol. dan Sist. Komput., vol. 9, no. 4, hal. 218–223, 2021, doi: 10.14710/jtsiskom.2021.14013.
R. Magdalena, S. Saidah, N. K. C. Pratiwi, dan A. T. Putra, “Klasifikasi Tutupan Lahan Melalui Citra Satelit SPOT-6 dengan Metode Convolutional Neural Network (CNN),” J. Edukasi dan Penelit. Inform., vol. 7, no. 3, hal. 335–339, 2021, doi: 10.26418/jp.v7i3.48195.
J. Gatc dan F. Maspiyanti, “Prediksi Parasit Plasmodium pada Citra Mikroskopis Sel Darah Merahdengan Convolutional Neural Networks,” J. Buana Inform., vol. 13, no. 1, hal. 31–41, 2022, [Daring]. Tersedia pada: https://ojs.uajy.ac.id/index.php/jbi/article/view/5007%0Ahttps://ojs.uajy.ac.id/index.php/jbi/article/view/5007/2603
L. Arisandi dan B. Satya, “Sistem Klarifikasi Bahasa Isyarat Indonesia (Bisindo) dengan Menggunakan Algoritma Convolutional Neural Network,” J. Sist. Cerdas, vol. 5, no. 3, hal. 135–146, 2022, doi: 10.37396/jsc.v5i3.262.
F. N. Cahya, N. Hardi, D. Riana, dan S. Hadiyanti, “Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network (CNN),” Sist. J. Sist. Inf., vol. 10, no. 3, hal. 618–626, 2021, doi: 10.32520/stmsi.v10i3.1248.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Hama Serangga pada Pertanian Menggunakan Metode Convolutional Neural Network
Pages: 397−406
Copyright (c) 2023 Ar'rafi Akram, Kun Fayakun, Harry Ramza

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).