Penerapan Algoritma Adaptive Response Rate Exponential Smoothing Terhadap Business Intelligence System


  • Romindo Romindo Universitas Pelita Harapan, Jakarta, Indonesia
  • Jefri Junifer Pangaribuan * Mail Universitas Pelita Harapan, Jakarta, Indonesia
  • Okky Putra Barus Universitas Pelita Harapan, Jakarta, Indonesia
  • (*) Corresponding Author
Keywords: Intelligent System; Sales Prediction; Adaptive Response Rate Exponential Smoothing Algorithm

Abstract

PT. XYZ is one of the companies in the field of furniture sales by offering its flagship product, namely spring bed. The company's business continues to grow every year, of course, the company must be able to complete its work quickly and precisely. One of the main problems of the company is that the increase in company sales is still not able to cover the company's expenses and sometimes the company still suffers losses. This happens because companies often make mistakes in purchasing product inventory stock. Not all types of spring beds sell well, so sometimes purchases are made of the type of spring bed that is not selling well, which results in stock accumulation and instability of the company's cash inflow and outflow. In this study, a Business Intelligence System was built, which is a form of information technology implementation to store, collect and analyze data into knowledge so that it can be used as prediction results. The prediction algorithm used in this research is the Adaptive Response Rate Exponential algorithm. The expected goal of this research is to build a Business Intelligence System that can calculate product sales predictions in the following month using the Adaptive Response Rate Exponential Smoothing (ARRES) algorithm. Based on the results of the MAPE test, it can be concluded that the percentage of prediction accuracy from the ARRES algorithm on the sales transaction data of PT. XYZ is 53.33% which is categorized as quite accurate and the percentage of prediction error from the ARRES method is 46.67% which is categorized as reasonable

Downloads

Download data is not yet available.

References

R. Romindo, “Penerapan Algoritma Apriori Terhadap Perancangan Sistem Informasi Dalam Analisis Penjualan Bahan Bangunan,” SATIN - Sains dan Teknologi Informasi, vol. 8, no. 1, pp. 01–11, Jun. 2022, doi: 10.33372/stn.v8i1.815.

J. J. Pangaribuan, H. Margono, O. P. Barus, Y. A. Pratama, and A. Maulana, “Sales, Purchase, and Inventory Information System Design at SMEs,” in 2022 1st International Conference on Technology Innovation and Its Applications (ICTIIA), IEEE, Sep. 2022, pp. 1–6. doi: 10.1109/ICTIIA54654.2022.9935929.

A. D. Putra and A. D. Putra, “RANCANG BANGUN APLIKASI E-COMMERCE UNTUK USAHA PENJUALAN HELM,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 1, no. 1, pp. 17–24, Jun. 2020, doi: 10.33365/jatika.v1i1.145.

R. Hayami, Sunanto, and I. Oktaviandi, “Penerapan Metode Single Exponential Smoothing Pada Prediksi Penjualan Bed Sheet,” Jurnal CoSciTech (Computer Science and Information Technology), vol. 2, no. 1, pp. 32–39, Jun. 2021, doi: 10.37859/coscitech.v2i1.2184.

J. Vimala and A. Nugroho, “FORECASTING PENJUALAN OBAT MENGGUNAKAN METODE SINGLE, DOUBLE, DAN TRIPLE EXPONENTIAL SMOOTHING ( STUDI KASUS : APOTEK MANDIRI MEDIKA),” IT-Explore: Jurnal Penerapan Teknologi Informasi dan Komunikasi, vol. 1, no. 2, pp. 90–99, Jun. 2022, doi: 10.24246/itexplore.v1i2.2022.pp90-99.

T. Andriyanto, “Sistem Peramalan Harga Emas Antam Menggunakan Double Exponential Smoothing,” INTENSIF, vol. 1, no. 1, p. 1, Feb. 2017, doi: 10.29407/intensif.v1i1.531.

E. Marvaro and R. Sefina Samosir, “Penerapan Business Intelligence dan Visualisasi Informasi di CV. Mitra Makmur Dengan Menggunakan Dashboard Tableau,” KALBISCIENTIA Jurnal Sains dan Teknologi, vol. 8, no. 2, pp. 37–46, Dec. 2021, doi: 10.53008/kalbiscientia.v8i2.197.

J. C. Nugroho, I. N. Y. A. Wijaya, and A. A. N. Redioka, “Penerapan Aplikasi Business Intelligence Pada Manajemen Report Guna Menunjang Pengambilan Keputusan,” Jutisi : Jurnal Ilmiah Teknik Informatika dan Sistem Informasi, vol. 10, no. 2, p. 335, Aug. 2021, doi: 10.35889/jutisi.v10i2.671.

S. Syarli, R. Tamin, and A. Qashlim, “Perancangan Business Intelligence System Pada Gudang Farmasi Dinas Kesehatan Kabupaten Mamasa,” Jurnal Keteknikan dan Sains (JUTEKS), vol. 1, no. 1, Jun. 2018.

M. H. Elison, R. Asrianto, and Aryanto, “PREDIKSI PENJUALAN PAPAN BUNGA MENGGUNAKAN METODE DOUBLE EXPONENTIAL SMOOTHING,” Jurnal Riset Sistem Informasi dan Teknologi Informasi (JURSISTEKNI), vol. 2, no. 3, pp. 45–56, Sep. 2020, doi: 10.52005/jursistekni.v2i3.60.

M. Hakimah, W. M. Rahmawati, and A. Y. Afandi, “PENGUKURAN KINERJA METODE PERAMALAN TIPE EXPONENTIAL SMOOTHING DALAM PARAMETER TERBAIKNYA,” Network Engineering Research Operation, vol. 5, no. 1, p. 44, Apr. 2020, doi: 10.21107/nero.v5i1.150.

P. Y. Lim and F. Wong, “Photovoltaic power predictions using modified adaptive response rate exponential smoothing method,” in 2016 IEEE International Conference on Sustainable Energy Technologies (ICSET), IEEE, Nov. 2016, pp. 369–373. doi: 10.1109/ICSET.2016.7811812.

D. S. Sudarwadi, M. Fitriani, and N. Nurlaela, “PENERAPAN METODE SINGLE MOVING AVERAGE DAN EXSPONENTIAL SMOOTHING PADA USAHA ASRIE MODESTA,” Cakrawala Management Business Journal, vol. 3, no. 1, p. 547, May 2020, doi: 10.30862/cm-bj.v3i1.58.

E. Andrianto, F. Santi Wahyuni, and R. Primaswara Prasetya, “APLIKASI SISTEM PERAMALAN KETERSEDIAAN STOK BARANG DI TOKO MEBEL ABADI JAYA MENGGUNAKAN METODE SINGLE MOVING AVERAGE DAN EXPONENTIAL SMOOTHING,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 6, no. 1, pp. 336–341, Mar. 2022, doi: 10.36040/jati.v6i1.4624.

E. Supardi and F. Pahlevi, “MANAJEMENPENGENDALIAN PERSEDIAAN DENGAN PENDEKATAN PERIODIC REVIEWDAN ADAPTIVE RESPONSE RATE SINGLE EXPONENTIAL SMOOTHING(STUDI KASUS : PT MERCK CHEMICALS AND LIFE SCIENCE),” Jurnal Bisnis dan Pemasaran, vol. 11, no. 1, pp. 1–22, Mar. 2021.

W. A. Safitri, F. Hadi, and S. A. Lusinia, “Penerapan Business Intelligence Dalam Upaya Menigkatkan Penjualan dan Pemasaran Pakaian Pada CV. Ryan Bali Garment Berbasis Web,” Jurnal KomtekInfo, vol. 8, no. 4, pp. 220–224, Aug. 2021, doi: 10.35134/komtekinfo.v8i4.178.

S. Pratasik, “Perancangan Sistem Business Intelligence Pada Palang Merah Indonesia Daerah Sulawesi Utara,” FRONTIERS: Jurnal Sains dan Teknologi, vol. 2, no. 2, pp. 199–209, Aug. 2019.

O. P. Barus, C. Nathasya, and J. J. Pangaribuan, “The Implementation of RFM Analysis to Customer Profiling Using K-Means Clustering,” Mathematical Modelling of Engineering Problems, vol. 10, no. 1, pp. 298–303, Feb. 2023, doi: 10.18280/mmep.100135.

N. H. A. S. Al Ihsan, H. H. Dzakiyah, and F. Liantoni, “Perbandingan Metode Single Exponential Smoothing dan Metode Holt untuk Prediksi Kasus COVID-19 di Indonesia,” Ultimatics : Jurnal Teknik Informatika, vol. 12, no. 2, pp. 89–94, Dec. 2020, doi: 10.31937/ti.v12i2.1689.

R. Romindo, “IMPLEMENTASI TEKNIK HEURISTIC DAN PEMODELAN POHON KEPUTUSAN TERHADAP PERANCANGAN GAME IQ,” INFOTECH journal, vol. 7, no. 1, pp. 22–27, May 2021, doi: 10.31949/infotech.v7i1.1000.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Algoritma Adaptive Response Rate Exponential Smoothing Terhadap Business Intelligence System

Dimensions Badge
Article History
Submitted: 2023-07-27
Published: 2023-09-30
Abstract View: 256 times
PDF Download: 261 times
How to Cite
Romindo, R., Pangaribuan, J., & Barus, O. (2023). Penerapan Algoritma Adaptive Response Rate Exponential Smoothing Terhadap Business Intelligence System. Building of Informatics, Technology and Science (BITS), 5(2), 565−575. https://doi.org/10.47065/bits.v5i2.3955
Section
Articles

Most read articles by the same author(s)