Penerapan Data Mining Dalam Prediksi Penjualan Prabot Rumah Tangga Menggunakan Metode Apriori Pada Toko Hasanah Mart
Abstract
The application of data mining is very well done, especially in predicting transaction patterns that are very often done in the sale and purchase of household furniture, household furniture is goods that are very much in demand by many groups, especially mothers, the higher the amount of demand, the more data transactions that must be processed, dug up to obtain the desired information and needed a method approach to processing transaction patterns that are the most desirable so that a store or company can sort out the inventory of goods that must be met based on the level of market needs, appropriate methods and has been widely used in one of the sales prediction is the Apriori method is a method that uses association rules that aim to see the associative relationship between a combination of items with other items, in data mining using the a priori method can also be done with very much data from and processed with a fast time and a very good level of data prediction accuracy.
Downloads
References
B. S. Mózo, “teknologi Dunia Industri,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2017, doi: 10.1017/CBO9781107415324.004.
B. R. B. Purba, N. A. Hasibuan, G. L. Ginting, and S. Suginam, “Implementasi Algoritma Apriori Untuk Mencari Relasi Pada Transaksi Pembelian Alat-Alat Kesehatan,” JURIKOM (Jurnal Ris. Komputer), vol. 5, no. 3, pp. 269–277, 2018, [Online]. Available: http://stmik-budidarma.ac.id/ejurnal/index.php/jurikom/article/view/773.
M. G. Sadewo, A. P. Windarto, and A. Wanto, “Penerapan Algoritma Clustering Dalam Mengelompokkan Banyaknya Desa/Kelurahan Menurut Upaya Antisipasi/ Mitigasi Bencana Alam Menurut Provinsi Dengan K-Means,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 2, no. 1, pp. 311–319, 2018, doi: 10.30865/komik.v2i1.943.
S. Defiyanti, “Integrasi Metode Clustering dan Klasifikasi untuk Data Numerik,” Citee, no. July, pp. 256–261, 2017.
A. Nursikuwagus and T. Hartono, “Implementasi Algoritma Apriori Untuk Analisis Penjualan Dengan Berbasis Web,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 7, no. 2, p. 701, 2016, doi: 10.24176/simet.v7i2.784.
A. Nugroho, Analisis dan Perancangan Sistem Informasi dengan Metodologi Berorientasi Objek, Edisi Revi. Bandung: Informatika Bandung, 2005.
P. T. G. Elkington et al., “Mycobacterium tuberculosis, but not vaccine BCG, specifically upregulates matrix metalloproteinase-1,” Am. J. Respir. Crit. Care Med., vol. 172, no. 12, pp. 1596–1604, 2005, doi: 10.1164/rccm.200505-753OC.
V. N. Budiyasari, P. Studi, T. Informatika, F. Teknik, U. Nusantara, and P. Kediri, “Implementasi Data Mining Pada Penjualan Sepatu Dengan Menggunakan Algoritma Apriori,” vol. 2, no. 2, pp. 1–8, 2017.
N. Adha, L. T. Sianturi, and E. R. Siagian, “IMPLEMENTASI DATA MINING PENJUALAN SABUN DENGAN MENGGUNAKAN METODE APRIORI ( Studi Kasus : PT. Unilever),” Maj. Ilm. INTI, vol. 12, no. 2, pp. 219–223, 2017.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Data Mining Dalam Prediksi Penjualan Prabot Rumah Tangga Menggunakan Metode Apriori Pada Toko Hasanah Mart
Pages: 33-38
Copyright (c) 2020 Natalia Silalahi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).